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Abstract

The years following the Great Recession were challenging in terms of forecasting:

the deep recession was not followed by a swift recovery, unlike in previous deep reces-

sions, but generated a sizable and persistent output gap. This gap did not result in

deflation, as a traditional Phillips curve relationship would have predicted. Moreover,

the ZLB and unconventional monetary policy generated a policy environment with-

out precedents. We document the real-real time forecasting performance of the New

York Fed DSGE model, and explain the results using the pseudo-real time forecast-

ing performance results from a battery of DSGE models. We find the New York Fed

DSGE model’s forecasting accuracy to be comparable to that of private forecasters,

and notably better, for output growth, than the median forecasts from the FOMC’s

Summary of Economic Projections. We find that the financial frictions were key in

obtaining these results, and they implied a slow recovery following the financial crisis.
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1 Introduction

The years following the Great Recession have been quite challenging from a forecasting point

of view. The deep recession was not followed by a swift recovery, unlike in previous post-

war deep recessions, but generated a persistent output gap. This large gap was however

not associated with negative inflation, as a traditional Phillips curve relationship would

have predicted, resulting in what Coibion and Gorodnichenko (2012) called the “missing

deflation” (see also Ball and Mazumder, 2011, and Del Negro et al., 2015a). At the same

time the federal funds rate was stuck at near zero levels for several years. This prompted

the central bank to use tools that had never been used before, such as quantitative easing

(henceforth, QE) and forward guidance. On top of all this, the U.S. economy found itself in

the middle of both a demographic transition caused by the retirement of baby boomers, and

a secular downward shift in the growth rate of total factor productivity, at least according

to some authors (see, among others, Fernald, 2015; Fernald et al., 2017; Gordon, 2015) .

This combination of unusual, far-from-steady-state conditions presented a challenging

environment for any econometric model, but in particular for dynamic stochastic general

equilibrium (DSGE) models in the tradition of Smets and Wouters (2003, 2007), due to

their rigid structure and tight cross-equation restrictions. Over the past decade, these models

have become part of many central banks’ forecasting and policy analysis toolbox, and the

post-Great Recession setting surely provided an important real-time test of their predictive

accuracy. How did these models fare?

Against this backdrop, this paper pursues two objectives. The first objective consists

in addressing the question above as far as the Federal Bank of New York DSGE model

(henceforth, NY Fed DSGE) is concerned. Specifically, Section 2 of the paper documents how

the NY Fed DSGE model fared in terms of real time forecasting accuracy relative to private

forecasters such as those surveyed in the Blue Chip survey or the Survey of Professional

Forecasters, as well as the Federal Reserve System’s Summary of Economic Projections,

and how researchers using the model coped with the difficulties discussed above. It will

also discuss how the model changed to incorporate financial frictions, and financial data as

observables.

The second objective of the paper consists in complementing this real real-time forecast-

ing exercise with a pseudo real-time analogue (Section 3). The main goal of this exercise

is to understand what model features, and observables, explain the performance of the NY
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Fed DSGE model. In addition, this exercise extends the historical forecast accuracy com-

parison of Edge and Gürkaynak (2010) and Del Negro and Schorfheide (2013) both in terms

of the period and the models considered. In fact, their comparison did not focus on the

post-Great Recession years, which were not considered at all in Edge and Gürkaynak (2010)

and barely included in Del Negro and Schorfheide (2013) (their sample ends in early 2011).

Moreover, Edge and Gürkaynak (2010) only consider the Smets and Wouters (2007)’s model

while Del Negro and Schorfheide (2013) mainly focus on the performance of close variants

of this model. Here, the centerpiece of our analysis will be models with financial frictions

(e.g., Del Negro et al., 2015b; Del Negro et al., 2016) that incorporate corporate spreads as

observables.

We find that in the short and medium run —from one through eight quarters ahead—

the NY Fed’s root means squared errors (henceforth, RMSEs) are comparable to those of

the median of both the Blue Chip and of the Survey of Professional Forecasters surveys.

Relative to the median of the FOMC’s Summary of Economic Projections, the NY Fed DSGE

model performs much better in terms of the accuracy of output growth forecasts, especially

at longer horizons (three years ahead). It performs worse than the median Summary of

Economic Projections up to a two year horizon, but better at a three year horizon. The

results of the pseudo real time forecasting exercise show that financial frictions play a major

role, especially in terms of the projections for economic activity, as they imply a slow recovery

from financial crisis —a result reminiscent of the findings of Reinhart and Rogoff (2009).

2 Real Real-Time Forecasts of NY Fed DSGE Model

This section begins with a brief description of the main features of the NY Fed DSGE model,

and of how they evolved over time. For the sake of brevity this description is at a general

level, and all the details are relegated to the Appendix and to other sources. The section

then continues by documenting the model’s forecasting accuracy ever since it has been used

to produce regular projections, that is, from 2011 onward.

2.1 A Short History of the New York Fed DSGE Model

The New York Fed DSGE model came to existence around 2004 as a three-equation New

Keynesian model (see Sbordone et al., 2010). At the time, the model was used for a variety
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of policy analysis exercises but not for forecasting. In 2008 that model was replaced by a

medium-scale (that is, Smets and Wouters (2007)-size) New Keynesian DSGE model built

along the lines of Del Negro and Schorfheide (2008) and estimated with Bayesian methods

using five time series: real GDP growth, core PCE inflation, hours, the labor share, and the

federal funds rate.1

In mid-2010 the model began to be used internally for forecasting the US economy and

from the end of 2010 onward the model’s forecasts have been produced systematically every

FOMC cycle, and incorporated in internal policy documents. Of course, at the time the

ZLB on nominal interest rates was an important constraint on monetary policy (and was to

remain so for another six years). We incorporated this constraint into the DSGE forecasts by

augmenting the measurement equation with federal funds rate expectations obtained from

financial markets, following the approach described in Del Negro and Schorfheide (2013) and

Del Negro et al. (2012). This approach amounted to forcing the model’s expectations for

the policy instrument to coincide with market expectations. Since the latter of course took

the ZLB into account, so did the DSGE projections. In order to provide the model with

the ability to accommodate federal funds rate expectations the policy rule in the model was

augmented with so-called anticipated policy shocks as used in Laseen and Svensson, 2011.

These policy “news” shocks capture constraints on future policy whenever contractionary

(e.g., when the anticipated policy rate is higher than predicted by the reaction function), or

future loosening of policy (forward guidance) whenever expansionary.

In 2010 the model underwent further transformations as we added financial frictions to

it, following the work of Christiano et al. (2003) and Christiano et al. (2014). Specifically, the

model was changed in order to incorporate a financial accelerator á la Bernanke et al. (1999),

implying that firms’ ability to invest is constrained by their leverage and by financial market

conditions more broadly. In order to capture financial conditions quantitatively we added the

spreads between Baa corporate bonds and Treasuries to the model’s set of observables. In

June 2011 the NY Fed DSGE forecasts obtained from the model with the financial frictions

became part of a memo produced four times a year for the FOMC (Dotsey et al., 2011; see

also page 2 of the June 2011 FOMC Minutes).

The model built in 2010, which is described in some detail in Del Negro et al. (2013),

continued to be the main workhorse for DSGE projections and policy analysis at the NY Fed

until the end of 2014. It was then replaced by another New Keynesian model with financial

1Del Negro and Schorfheide (2008) and Del Negro et al. (2013) provide a detailed description of the

model, priors, data, and estimation procedure.

https://www.federalreserve.gov/monetarypolicy/files/FOMC20110609memo02.pdf
https://www.federalreserve.gov/monetarypolicy/files/fomcminutes20110622.pdf
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frictions – the so-called SWFF model used in Del Negro and Schorfheide (2013) and Del

Negro et al. (2015a). Relative to the financial friction model introduced in 2010, SWFF was

closer to the original Smets and Wouters (2007) model in terms of the specification of the

household’s utility function and other modeling details. Importantly, its forecasting accuracy,

especially in periods of financial stress such as the financial crisis, had been demonstrated

in Del Negro and Schorfheide (2013) and Del Negro et al. (2016). In addition, it had the

advantage of adding investment and consumption to the set of observables.2

The SWFF model itself was in fact never used in production at the NY Fed. Rather,

we adopted a variant of this model called SWFF+. This was partly because the SWFF

model used in academic papers measured inflation using the GDP deflator. However, the

core PCE deflator was a more relevant measure for policy purposes. We therefore added this

variable to the set of observables under the assumption that inflation in the model is the

common component between these two empirical measures of inflation.3 Moreover, at the

time a debate on a possible secular decline in productivity growth begun in the early 2000s

was raging (Gordon, 2015; Fernald, 2015, e.g.,). Given the important policy implications

of this debate we also added John Fernald’s measure of total factor productivity growth

(henceforth, TFP) to the data on which the model was estimated. In order to give the DSGE

a chance to capture secular shifts in productivity growth we modeled TFP as the sum of two

components: a trend-stationary one (as in Smets and Wouters, 2007) and a non-stationary

component whose growth rates follow an autoregressive process. As the autocorrelation

coefficient approaches one, the latter component can in principle capture very persistent

shifts in TFP growth. Furthermore, we also added the 10-year Treasury yield to the set of

observables in order to capture changes in financial conditions stemming from Quantitative

Easing operations as well as forward guidance. Finally, the last change so far to the NY

Fed DSGE model took place in early 2016. Model SWFF++ differed from model SWFF+ in

that it included an additional measure for output, GDI, following the work of Aruoba et al.

(2016).4

2SWFF is estimated on the same observables as Smets and Wouters (2007) (namely the growth rates

in GDP, consumption, investment, and wages, all expressed in real terms, the level of hours, GDP deflator

inflation, and the federal funds rate), plus spreads and long run inflation expectations obtained from the

Federal Reserve Bank of Philadelphia’s Survey of Professional Forecasters. The latter are included because

Del Negro and Schorfheide (2013) found that they improve the model’s accuracy in forecasting in inflation

even when the prior on the steady state inflation parameter is relaxed substantially relative to Smets and

Wouters (2007)’s paper.
3This choice was inspired by the work of Boivin and Giannoni (2006) and Justiniano et al. (2013).
4The Appendix provides all the equilibrium conditions, prior specification, and data definitions for models
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Starting in September 2014 the NY Fed DSGE model forecasts have been made public on

the Liberty Street Blog twice a year and then, starting in 2017, four times a year (specifically,

the forecasts were made available in May and December 2015, May and November 2016, and

in February, May, August and November 2017). The current model specification is also

available online as well as the Matlab codes for the early financial friction model and SW+,

and the Julia codes for SW++.5

2.2 NY Fed DSGE Forecasts

In this section we examine the performance of NY Fed DSGE forecasts of real GDP growth

and core PCE inflation, focusing on forecasts made for each FOMC cycle from 2011Q1

to 2016Q1. First, we consider the RMSEs of the DSGE model’s real output growth and

core PCE inflation forecasts relative to the output forecasts of the Blue Chip Economic

Indicators (henceforth, BCEI) survey and the output and inflation forecasts of the Survey of

Professional Forecasters (SPF) and the FOMC’s Summary of Economic Projections (SEP).6

We do not show the federal funds rate projections because the NY Fed DSGE forecasts

during this period were condional on external forecasts for this variables in order to take

the ZLB and forward guidance into account, as discussed above. Second, we examine the

evolution of the NY Fed DSGE model’s forecasts for output and inflation and compare

them to contemporaneous SEP forecasts and realized data in order to explain some of the

differences in forecast accuracy. The NY Fed DSGE forecasts considered in this comparison

range from January 2011 to March 2016.

To compute RMSEs we create for each survey forecast a sample of comparable DSGE

forecasts. For a given survey forecast, we search for the nearest preceding DSGE model

forecast with the same first forecast quarter. If we cannot find such a forecast, then we drop

that observation from the sample.7 This matching scheme ensures that the DSGE forecasts

SWFF, SWFF+ and SWFF++. As mentioned earlier, Del Negro et al. (2013) contains this information for

the early financial friction model.
5The codes for the three models are available at https://github.com/FRBNY-DSGE in the subdirectories

DSGE-2014-Sep, DSGE-2015-Apr, and DSGE.jl, respectively.
6We cannot compare historic DSGE forecasts of inflation to BCEI forecasts as the latter reports GDP

deflator inflation instead of core PCE inflation.
7Although we historically ran DSGE forecasts at least one to two times each quarter, the time within the

quarter at which they were run was not always consistent. For this reason, sometimes there is not a suitable

DSGE forecast preceding the survey forecast.

http://libertystreeteconomics.newyorkfed.org/2014/09/the-frbny-dsge-model-forecast.html
http://libertystreeteconomics.newyorkfed.org
http://libertystreeteconomics.newyorkfed.org/2015/05/the-frbny-dsge-model-forecast-april-2015.html
http://libertystreeteconomics.newyorkfed.org/2015/12/the-frbny-dsge-model-forecastnovember-2015.html
http://libertystreeteconomics.newyorkfed.org/2016/05/the-frbny-dsge-model-forecastmay-2016.html
https://www.newyorkfed.org/medialibrary/media/research/blog/2017/LSE_dsge-forecast-appendix_Aug-2017.pdf
http://libertystreeteconomics.newyorkfed.org/2017/02/the-frbny-dsge-model-forecast-february-2017.html
http://libertystreeteconomics.newyorkfed.org/2017/05/the-new-york-fed-dsge-model-forecast-may-2017.html
http://libertystreeteconomics.newyorkfed.org/2017/09/the-new-york-fed-dsge-model-forecast-august-2017.html
http://libertystreeteconomics.newyorkfed.org/2017/11/the-new-york-fed-dsge-model-forecast-november-2017.html
https://github.com/FRBNY-DSGE/DSGE.jl/blob/master/docs/DSGE_Model_Documentation_1002.pdf
https://github.com/FRBNY-DSGE/DSGE-2015-Apr
https://github.com/FRBNY-DSGE/DSGE-2014-Sep
https://github.com/FRBNY-DSGE/DSGE-2015-Apr
https://github.com/FRBNY-DSGE/DSGE.jl
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Figure 1: Historic RMSEs for NY Fed DSGE Model Forecasts

Blue Chip SPF SEP

1
N = 18

2
N = 18

3
N = 18

4
N = 18

5
N = 18

6
N = 18

7
N = 14

8
N = 7

0.2

0.4

0.6

0.8

1.0

Real GDP Growth

1
N = 13

2
N = 13

3
N = 13

4
N = 13

5
N = 13

6
N = 0

7
N = 0

8
N = 0

0.2

0.4

0.6

0.8

1.0

Real GDP Growth

1
N = 18

2
N = 17

3
N = 13

4
N = 3

0.2

0.4

0.6

0.8

1.0

Real GDP Growth

1
N = 13

2
N = 13

3
N = 13

4
N = 13

5
N = 13

6
N = 0

7
N = 0

8
N = 0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Core PCE Inflation

1
N = 18

2
N = 17

3
N = 13

4
N = 3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Core PCE Inflation

Note: These panels compare the RMSEs for NY Fed DSGE model forecasts of real GDP growth and core PCE inflation from
January 2011 to March 2016 to those of the Blue Chip Economic Indicators survey, the Survey of Professional Forecasters
(SPF), and the Summary of Economic Projections (SEP). The Blue Chip and SPF forecasts are in terms of Q/Q percent rates
and the SEP forecasts are expressed in Q4/Q4 average rates. When computing RMSEs, each external forecast is matched to
the nearest preceding DSGE forecast in order to ensure comparability of results.

are not given an informational advantage.8

The BCEI forecasts are reported in quarter-to-quarter (henceforth, Q/Q) percent change

and are released monthly. We consider the April, July, October and January forecasts, as

these are the last ones that are released prior to the release of the Q1, Q2, Q3, and Q4 GDP

measurements. Under our matching scheme, these forecasts are typically matched with

the forecasts produced for the March, June, September, and December FOMC meetings,

respectively. The Blue Chip survey asks respondents to forecast from the current quarter

8Once a matching DSGE forecast is found, we transform and trim it to match the units and forecast

horizon, respectively, of the survey forecast.
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until the end of the next calendar year, which sets the forecast horizon to range from 9

quarters in January (beginning in Q4 of the previous year) to 6 quarters in October. The

SPF is released at the beginning of the second month of each quarter, and is therefore

matched with DSGE forecasts from the January, April, July, and October FOMC meetings,

whenever possible. The SPF forecasts for core PCE inflation and real GDP growth are also

in Q/Q percent change. Its forecast horizon is consistently five quarters. Fewer observations

are available to compute this set of RMSEs because there are less often DSGE forecasts that

both precede the SPF release and share the same first forecast quarter, as GDP is released

at the end of the first month of each quarter. We compare the NY Fed DSGE forecast with

the mean BCEI and SPF projection.

Lastly, the SEP is released every other FOMC meeting beginning with the March meet-

ing. SEP participants project Q4/Q4 real GDP growth rates and core PCE inflation rates

for the current year and up to three subsequent years. We compare the DSGE forecast with

the median SEP projection. Since DSGE forecasts are also produced in anticipation of each

FOMC meeting, the corresponding DSGE forecasts are a natural match for the SEP projec-

tions. Note that while both Blue Chip and SPF surveys produce “fixed horizon” forecasts

projections (that is, they are always released at a fixed interval before the quarter being

forecasted), the SEP do not: in each year, there are four SEP releases which share the same

first forecast year, but were made using different information sets. This is in contrast to the

Blue Chip and SPF forecasts.

The three sets of RMSE comparisons shown in Figure 1 illustrate that over the 2011-

2016 period the NY Fed DSGE projections are broadly competitive with survey forecasts in

terms of accuracy. The left panel of Figure 1 shows that the NY Fed DSGE’s and BCEI

RMSEs for output growth are virtually they same throughout the forecast horizon.9 The

DSGE model’s output growth and core PCE inflation forecasts are moderately worse than

the SPF forecasts, but generally comparable.10 The NY Fed DSGE model performs notably

9It may be surprising that the first quarter ahead DSGE forecasts, that is, the nowcast, are as accurate

as the BCEI’s, given the latter informational advantage. This results is driven by the fact that the NY

Fed DSGE model conditions its projections on judgemental nowcasts from the staff in order to improve the

short-run accuracy of its forecasts (Del Negro and Schorfheide, 2013, see)). Section 3.4 elaborates on this

issue.
10The discrepancy between the DSGE’s output RMSEs on left and middle two plots and the relatively

worse performance of the DSGE versus the SPF is likely due to the fact that for the reasons discussed above

there are much fewer DSGE forecasts matching the SPF forecast vintages. Moreover, we think that for some

of these forecasts the information set is actually smaller than that of the SPF, in that the latest quarter
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Figure 2: Evolution of NY Fed DSGE Model Forecasts
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Note: These panels show NY Fed DSGE model forecasts of four quarter average real GDP growth (left column, red lines)
and core PCE inflation (right column, red lines) from March 2011 and April 2012. In addition, these plots show the realized
data as of the forecast date (solid black lines), the revised series as of November 1, 2017 (dashed black lines), and the upper
and lower bounds of the central tendency of the Summary of Economic Projections (SEP) forecasts (purple circles) from the
corresponding FOMC meetings.

better than the SEP’s output forecasts over all horizons from one to three years ahead (we

have only three four-year eahd observations). In terms of inflation, the median SEP is more

accurate for one to two years ahead, but less accurate for three years ahead.

Next, Figures 2 show NY Fed DSGE forecasts of four quarter average real GDP growth

and core PCE inflation made in the first quarters of each year from 2011 to 2016, and provide

some context for the RMSEs discussed previously. For comparison, we include as well the

revised data series as of November 2017 and contemporaneous SEP projections (we show the

SEP’s “central tendency”, which includes all SEP participants except the top and bottom

three). Early in 2011 we see that the SEP projected that the recovery from the Great

Recession would be relatively quick, with growth rates above four percent. The NY Fed

DSGE model instead projects a very slow recovery from the financial crisis, a finding that

echoes the results of Reinhart and Rogoff (2009), although it is obtained in a completely

different setting. As we now know, the more pessimistic forecasts of the NY Fed DSGE

model were much closer to the realized growth rates through 2013. As discussed at length in

Section 3.2, the model’s financial frictions play a key role in these projections. The DSGE

GDP release was not available when the forecast was produced.
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Figure 2: Evolution of NY Fed DSGE Model Forecasts – Continued
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Note: These panels show NY Fed DSGE model forecasts of four quarter average real GDP growth (left column, red lines)
and core PCE inflation (right column, red lines) from March 2013, March 2014, March 2015, and March 2016. In addition,
these plots show the realized data as of the forecast date (solid black lines), the revised series as of November 1, 2017 (dashed
black lines), and the upper and lower bounds of the central tendency of the Summary of Economic Projections (SEP) forecasts
(purple circles) from the corresponding FOMC meetings.

model’s inflation projections are also very subdued. For this reason, they miss the spike

in inflation associated with the so-called Arab Spring in late 2011-2012. However, they are

quite in line with the low inflation experienced after 2013.
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In the latter half of the sample, the DSGE models’ forecasts are less accurate over the

short run but still reasonably accurate over the medium and long term. It is worth noting

that by 2015 the SEP and DSGE output growth forecasts have largely aligned. For inflation,

the DSGE models’ forecasts are often more downbeat than the SEP, predicting only a gradual

return of inflation to the FOMC’s long run goal of two percent. Especially in later years, the

DSGE tends to systematically under-predict inflation, while the SEP tends to over-predict

it, as it always projects inflation to return to two percent inflation within a couple of years.

3 Pseudo Real-Time Forecasts

This section uses the results of a pseudo real-time forecasting exercise to understand what

model features, and observables, explain the performance of the NY Fed DSGE model.

While in a real real-time environment we only have the forecasts from the specific model

used at that time, a pseudo real-time setting offers the possibility of running counterfactual

experiments, such as: What forecasts would we have obtained if we had stripped financial

frictions from the model (Section 3.2)? What if we did not condition the forecast on external

expectations for the policy rate (Section 3.3)? What if we did not condition on the nowcast

(Section 3.4)? Moreover, while the forecasts discussed in Section 2 only pertain to the post-

2011 year, in a pseudo-real time setting we can investigate the models’ performance from

1992 onward (this is the beginning of the sample used in Edge and Gürkaynak, 2010, and

Del Negro and Schorfheide, 2013). Last, we saw in Section 2.1 that the current version of

the NY Fed model, SWFF++, has a number of additions, both in terms of features and data,

relative to the baseline SWFF model used in Del Negro and Schorfheide (2013), Del Negro

et al. (2015a), and Del Negro et al. (2016). We then ask whether these additions helped

or hindered the model’s forecasting performance (Section 3.6). The next section provides

some details regarding the construction of the real-time dataset and of the DSGE model

forecasts.

3.1 Real-Time Dataset and DSGE Forecasts Setup

The models used in this section are the prototypical Smets and Wouters (2007) model (hence-

forth, SW), which does not have financial frictions, the SWFF model, and the two “descen-

dants” of SWFF mentioned in Section 2.1, SWFF+ and SWFF++. Table 1 below lists the

data series used for each model. In this section, we first discuss the data series used for
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that model and the process of constructing a real-time dataset. Next, we discuss the con-

struction of the Blue Chip forecasts dataset – our benchmark for evaluating the accuracy of

the DSGE forecasts. In the construction of both the real time and the Blue Chip forecasts

datatset we follow the approach of Del Negro and Schorfheide (2013, section 4.1) and Edge

and Gürkaynak (2010). Last, we discuss the DSGE forecast setup.

Table 1: Data series used in each model

Variable SW SWFF SWFF+ SWFF++

GDP growth X X X X

Consumption growth X X X X

Investment growth X X X X

Real wage growth X X X X

Hours worked X X X X

GDP deflator inflation X X X X

FFR X X X X

10y inflation exp X X X

Spread X X X

Core PCE inflation X X

10y bond yield X X

TFP growth, demeaned X X

GDI growth X

3.1.1 Data Series

Data on nominal GDP (GDP), nominal GDI (GDI), the GDP deflator (GDPDEF), core PCE

inflation (JCXFE), nominal personal consumption expenditures (PCEC), and nominal fixed

private investment (FPI) are produced at a quarterly frequency by the Bureau of Economic

Analysis, and are included in the National Income and Product Accounts (NIPA). Aver-

age weekly hours of production and nonsupervisory employees for total private industries

(AWHNONAG), civilian employment (CE16OV), and the civilian non-institutional popu-

lation (CNP16OV) are produced by the Bureau of Labor Statistics (BLS) at a monthly

frequency. The first of these series is obtained from the Establishment Survey, and the re-

maining from the Household Survey. Both surveys are released in the BLS Employment
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Situation Summary. Since our models are estimated on quarterly data, we take averages of

the monthly data. Compensation per hour for the non-farm business sector (COMPNFB)

is obtained from the Labor Productivity and Costs release, and produced by the BLS at a

quarterly frequency.

The federal funds rate is obtained from the Federal Reserve Board’s H.15 release at a

business day frequency. Long-run inflation expectations are obtained from the Blue Chip

Economic Indicators survey and the Survey of Professional Forecasters available from the

FRB Philadelphia’s Real-Time Data Research Center. Long-run inflation expectations (av-

erage CPI inflation over the next 10 years) are available from 1991Q4 onward. Prior to

1991Q4, we use the 10-year expectations data from the Blue Chip survey to construct a long

time series that begins in 1979Q4.11 We measure spread as the annualized Moody’s Sea-

soned Baa Corporate Bond Yield spread over the 10-Year Treasury Note Yield at Constant

Maturity. Both series are available from the Federal Reserve Board’s H.15 release.

Lastly, TFP growth is measured using John Fernald’s TFP growth series, unadjusted for

changes in utilization. We use his estimate of (1 − α) to convert it into labor-augmenting

terms. The details of the data transformations are given in section B of the appendix.

3.1.2 Blue Chip Forecasts

We primarily compare our pseudo real-time forecasts to contemporaneous ones from the

Blue Chip Economic Indicators (BCEI) and the Blue Chip Financial Forecasts (BCFF),

two monthly surveys of business economists’ projections for macroeconomic and financial

variables, respectively. In this paper, we are interested in forecasts of real GDP growth

and (GDP deflator) inflation from the BCEI and forecasts of the federal funds rate from

the BCFF. In the RMSE comparisons below, we compare our DSGE model forecasts to the

mean BCEI GDP growth and inflation forecasts and the median BCFF federal funds rate

forecast. The BCEI survey is published on the 10th of each month, using data that were

available at the beginning of the month; the BCFF survey is published on the 1st of each

month. Though both surveys are released on a monthly basis, we restrict our attention to

the January, April, July, and October forecasts. These are the months in which the last

forecast for each quarter is made.

11Since the Blue Chip survey reports long-run inflation expectations only twice a year, we treat these

expectations in the remaining quarters as missing observations and adjust the measurement equation of the

Kalman filter accordingly.
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For example, the BEA publishes the first estimate of fourth-quarter GDP at the end of

the next January, and the first estimate of first-quarter GDP at the end of April. Hence

the Blue Chip surveys released in February, March, and April contain forecasts in which the

first forecasted quarter is Q1. The April Blue Chip survey is the last one to forecast Q1, and

choosing it gives the Blue Chip forecasters the greatest informational advantage. In doing

so, we allow them to observe the entirety of Q1, potentially incorporating higher-frequency

financial data into their forecasts.

The sample we consider contains the Blue Chip forecasts from January 1991 to April

2016. Within this sample, we construct real-time datasets using data vintages available on

the 10th of January, April, July, and October of each year. We use the St. Louis Fed’s

ALFRED database as our primary source of vintaged data. The GDP, GDP deflator, PCE,

investment, hours, and employment series have vintages available for the entire sample.

The earliest available vintages for the core PCE index and GDI are July 29th, 1999 and

December 20th, 2012 respectively. In the real-time datasets before these dates, we use the

earliest available vintage of each series, subsetting out the quarters of data that would have

been available at each date. Hourly wage vintages are only available on ALFRED beginning

in 1997; we use pre-1997 vintages from Edge and Gürkaynak (2010). John Fernald’s capital

share and TFP growth series are not available on ALFRED. Though there do seem to be

revisions, particularly to the TFP growth estimates, we treat these two series as unrevised,

using the February 28th, 2017 vintage. As we did for the core PCE and GDI series, for a

given real-time dataset, we use only the quarters of data that would have been available

at that date. The financial variables and the population series are not revised. For each

real-time vintage, we use the Hodrick-Prescott filter on the population data observations

available as of the forecast date.

When we compare the RMSEs of DSGE model and Blue Chip forecasts below, we only

use as many DSGE forecast horizons as are available in the corresponding Blue Chip release.

BCEI respondents submit quarterly forecasts through the end of the next calendar year,

so that they forecast 9 quarters in January (beginning with Q4 of the previous year) but

only 6 quarters in October. For the majority of our sample (beginning in April 1997),

BCFF respondents submit forecasts for 6 quarters in the months of January, April, July,

and October and for 5 quarters in all other months.12 Unlike the macroeconomic variables

forecasted in the BCEI, which are released on a lag, the quarterly averages for the financial

12Before April 1997, BCFF submit forecasts for 5 quarters in January, April, July, and October and for 4

quarters in all other months.
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variables in the BCFF are immediately observed at the end of each quarter. To maintain

consistency with the output growth and inflation forecasts, we impose that the first forecasted

period for the interest rate is the previous quarter, which is perfectly forecasted to be the

observed quarterly average. This gives us a total FFR forecast horizon of 7 quarters. The

RMSEs are computed using data downloaded on November 1, 2017.

3.1.3 DSGE Forecast Setup

In our baseline setup, we condition on external interest rate forecasts as in sections 5.4 and

6.3 of Del Negro and Schorfheide (2013). We do so because this was the approach taken in

generating the NY Fed DSGE model forecasts. We augment the measurement equation to

add

Re
t+k|t = R∗ + EtRt+k, k = 1, . . . , K

where EtRt+k is the model-implied k-period ahead interest rate expectation. We use the

median k-period ahead forecast from the BCFF for the observed series Re
t+k|t on the left-

hand side. The data transformation is given in section B of the appendix. In order to provide

the model with the ability to accommodate federal funds rate expectations the policy rule

in the model was augmented with so-called anticipated policy shocks, as discussed in section

2.1. We take the number of anticipated shocks K to be 6, which is the maximum number

of BCFF forecast quarters (excluding the observed quarterly average that we impute in the

first forecast period).

Specifically, in a given quarter t, the interest rate expectations observablesRe
t+1|t, . . . , R

e
t+K|t

come from the BCFF forecast released in the first month of quarter t + 1.13 For example,

for t = 2008Q4, we use the January 2009 BCFF forecasts of interest rates. We first use

interest rate expectations data beginning in 2008Q4 and continue their use through liftoff,

reflecting the post-financial crisis era of central bank forward guidance. Unlike in Del Negro

and Schorfheide (2013), after 2008Q4 we use the expanded dataset containing interest rate

forecasts in both estimation and forecasting — again, because this was the approach taken

in forecasting with the NY Fed DSGE. However, rather than estimating a separate standard

deviation σrm,k for each of the K anticipated shocks, we impose the restriction σ2
rm,k =

σ2
rm

K
,

which implies that the sum of the variances of the anticipated shocks equals the variance of

13Since the BCFF survey is released during the first fews days of the month, the information set of BCFF

forecasters is effectively t – that is, they have no information about quarter t+ 1.
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the contemporaneous shock σrm . We do so because at the beginning of the ZLB period we

have too few observation to estimate these variances independently.14

We furthermore follow section 5.3 of Del Negro and Schorfheide (2013) in conditioning on

so-called nowcasts — forecasts of the current (first forecast) quarter — of GDP growth, GDP

deflator inflation, and financial variables. We accomplish this by appending an additional

period of partially observed data at time T + 1.15 Specifically, for each real-time forecast

vintage, we condition on the corresponding BCEI release’s mean forecasts of GDP growth

and GDP deflator inflation in period T + 1. Our choice of forecast origin months means

that the entire first forecast quarter has already elapsed by the time the forecast is made, so

quarterly averages of financial variables have been observed in their entirety. Finally, we use

the BCFF interest rate forecast Re
T+2:T+K|T+1 as observed expectations of future interested

in quarter T + 1. Table 2 summarizes the T + 1 conditioning information. Note that we do

not use any of this information in forecasting, only in estimation.

Table 2: Summary of T + 1 conditioning information

Variable Source

GDP growthT+1 BCEI forecast of T + 1 GDP growth

GDP deflator inflationT+1 BCEI forecast of T + 1 GDP deflator inflation

Spread Observed Data

RT+1 Observed Data (which coincides with Re
T+1|T+1)

RT+2|T+1 Re
T+2|T+1

...
...

RT+K−1|T+1 Re
T+K|T+1

In the pseudo real-time forecasting exercise we do not reestimate the DSGE model in

every quarter, but only once a year using the January vintage.

14This restriction was imposed when producing the NY Fed DSGE projections.
15Unlike in Del Negro and Schorfheide (2013), we treat the nowcast for T + 1 as a perfect signal of yT+1,

a specialization of both of the Noise and News assumptions in that paper in which we set ηT+1 = 0. This

is also what we do in the production of the NY Fed DSGE forecasts, although we usually rely on the staff’s

nowcast rather than the BCEI’s.
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3.2 The Importance of Financial Frictions

This section investigates the importance of financial frictions for the DSGE models’ forecast-

ing performance during the recovery. It does so by comparing the forecasting performance

of the prototypical SW model with that of SWFF, a version of that model augmented with

financial frictions.

The top and bottom panels of Figure 3 compare the RMSEs for SW (top row, red circles)

and SWFF (bottom row, red circles) with the Blue Chip (blue diamonds) for output growth,

inflation, and interest rates projections one through eight quarters ahead computed from

April 2011 to April 2016. For both models the forecasts are conditional on the BCFF forecasts

for the federal funds rate, and the BCEI nowcasts for output growth and inflation. We do so

because conditioning on external forecasts for the policy instrument and nowcasts was the

operating procedure for the NY Fed DSGE projections during this period, as discussed in

Section 2.

Figure 3 shows that the accuracy of the SWFF projections for output growth and infla-

tion is comparable to that of the BCEI median forecasts. In fact, the output growth RMSEs

for SWFF are also very similar to those of the NY Fed DSGE model shown in Figure 1

(upper left panel). The accuracy of the forecasts from the SW model is considerably worse

however, especially for output. SWFF differs from SW because of both the addition of finan-

cial frictions (and spreads as observables) and the use of long run inflation expectations (and

a time varying inflation target). Figure 14 in the Appendix shows that the key difference

between the two models in terms of forecasting performance is the financial frictions: the

SW model with long run inflation expectations —called SWπ in Del Negro and Schorfheide

(2013)— performs as poorly as SW for output during this period (although it does perform

slightly better for inflation, consistent with the findings in Del Negro and Schorfheide, 2013).

In order to understand why the SWFF model’s forecasts are so much more accurate than

SW’s, Figure 7 shows the two models’ forecasts computed using the January 2012 vintage.

The top and bottom rows show the forecast for the SW and SWFF model, respectively.

Specifically, the figure shows the DSGE model forecasts (red solid line), the January 2012

Blue Chip forecast (blue solid line); real-time data (black solid); and revised final data

from November 1st, 2017 (gray dashed) of output, inflation, and the interest rate. While

SWFF’s forecasts for output growth are subdued — indeed, more subdued than the BCEI

projections — the SW forecasts are very optimistic and project a fast closing of the gaps that

opened following the Great Recession. Similar to the SEP forecasts showed in Figure 2, the
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Figure 3: RMSEs for SW and SWFF models
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Note: The top and bottom panels compare the RMSEs for the SW (top row, red circles) and SWFF (bottom row, red circles)
DSGE models with the Blue Chip (blue diamonds) for one through eight quarters ahead for output growth, inflation, and
interest rates. Output growth and inflation are expressed in Q/Q percent annualized terms, whereas interest rates are in
quarterly annualized percentage points. The N = n labels under each x-axis tick indicate the number of observations available
for both the BCEI and DSGE forecasts at that horizon. The forecasts included in these calculations are from April 2011 to
April 2016. The DSGE forecasts are conditional on the BCFF forecasts for the federal funds rate, and the BCEI nowcasts for
output growth and inflation. Section 3.2 provides the details of the forecast comparison exercise.

SW model believes in a fast recovery after the Great Recession. The SWFF model instead

projects a slow recovery. As such, the SWFF projections are qualitatively similar to those of

the NY Fed DSGE model shown in Figure 2. The January 2012 inflation projections from

SW are also more off the mark than those from SWFF.16

16This is partly explained by the fact that the degree of nominal rigidities is lower in SW than in SWFF,

as documented in Table 3. Therefore inflation depends more on current marginal costs and less on future

marginal costs (see the discussion in Del Negro et al., 2015a). Since in terms of levels the output gap is still

open in 2012 also for the SW model, current marginal costs are still low and inflation projections are lower.
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Figure 4: SW and SWFF forecasts using January 2012 data
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Note: The panels show the DSGE forecasts obtained using data available as of January 2012 (red solid), the January 2012 Blue
Chip forecast (blue solid line); real-time data (black solid); and revised final data from November 1st, 2017 (gray dashed) of
output, inflation, and the interest rate. The DSGE forecasts are conditional on the BCFF forecasts for the federal funds rate,
and the BCEI nowcasts for output growth and inflation. The top and bottom rows show the forecast for the SW and SWFF
model, respectively. Output growth and inflation are expressed in Q/Q percent annualized terms, whereas interest rates are in
quarterly annualized percentage points.

The differences in the forecasts between SW and SWFF are not surprising if we consider

the different explanations these two models have for the Great Recession. Figure 5 decom-

poses the history of real GDP growth, as of 2012, into the various disturbances affecting the

economy in the two models. The SWFF model (right panel) attributes the Great Recession

almost exclusively to financial shocks, mostly the so-called “risk premium” shocks (these

are the shocks labeled b in Figure 5, represented by purple bars). The impulse responses in

Figure 6 (bottom panel) show that these risk premium shocks have a very persistent effect

on the economy: they have a negative effect on growth rates of almost 12 quarters, implying
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Figure 5: Shock Decompositions of GDP Growth
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Note: The panels show the SW (left) and SWFF (right) models’ shock decompositions of real GDP growth from the January
2012 forecast origin. The solid line (black for realized data, red for mean forecast) shows output growth in deviation from
steady state in Q/Q percent annualized terms. The bars represent the contribution of each shock to the deviation from steady
state, computed as the counterfactual values obtained when all other shocks are zero. Some of the shocks have been aggregated
in this decomposition. In order, the SWFF shocks are categorized into aggregate demand, discount factor, financial frictions,
productivity, price markup, wage markup, monetary policy, inflation target, and marginal efficiency of investment. The gray
bars represent the deterministic trend, the counterfactual values obtained from iterating the initial state vector forward without
any shocks. The shock categories for the SW model are a strict subset of the SWFF shock categories.

that the level of GDP recovers only after three years.

The SW model also attributes the Great Recession also partly to risk premium shocks

(see the left panel of Figure 5). However the role of these shocks is not as important as

in SWFF, partly because the SW model does not use spreads as observables. Moreover,

because the model lacks financial frictions, the impulse responses to these shocks are far

less persistent in SW (top panel of Figure 6), as in that model growth rebounds only a few

quarters after the shock first hit. In SW the Great Recession is driven in large part by

policy shocks (which capture the ZLB constraint; yellow bars in Figure 5) and by marginal

efficiency of investment shocks (these are the so-called MEI shocks emphasized in Justiniano

et al. (2010); they are labeled µ in Figure 5 and are represented by light blue bars). Figure 6

shows that the persistence of both shocks is much more modest than that of risk premium

shocks in SWFF.

In conclusion, the SW model believes that the Great Recession was due to disturbances

whose effect on the economy are less persistent than the impact of financial shocks in the

SWFF model. This implies that the SW model expects a faster return of the economy

to steady state, and therefore high growth rates of the economy. In addition, when these

high growth rates do not materialize in the aftermath of the recession, the model attributes
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Figure 6: Impulse Responses of Real GDP Growth
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Note: The panels compare the SW (top panels) and SWFF (bottom panels) DSGE models’ impulse response functions of real
GDP growth to one-standard-deviation innovations in the discount factor (left), marginal efficiency of investment (center), and
contemporaneous monetary policy (right) shocks. Parameters estimated using the baseline January 2012 dataset are used.

these forecast misses to additional temporary negative shocks, that are followed by a quick

recovery. As the effect of these shocks is compounded, SW ends up predicting very high

growth rates for the economy, as shown in Figure 4.

Does SWFF predicts a slow recovery after every recession? Figure 7 shows that this is

not the case. The figure shows the real GDP growth projections using the April 1982 data

vintage — that is, at the trough of the 1982 recession.17 The SWFF model predicts a very

fast recovery after the 1982 recession, and its predictions are strikingly in line with ex post

17We use the end of sample parameter estimates, but otherwise the forecasts are out-of-sample.
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Figure 7: SWFF Forecast of the 1982 Recession
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Note: The figure shows the SWFF forecasts for real GDP growth beginning in 1982Q1 (red solid); real-time data (black solid);
and revised final data from November 1st, 2017 (gray dashed) of output, inflation, and the interest rate. The forecasts were
generated using April 1982 data, using the parameters from the January 2016 estimation.

outcomes. This is the case because the model attributes the recession to disturbances whose

effect on the economy is more short-lasting than that of financial shocks, such as monetary

policy shocks.

3.3 Conditioning on FFR Expectations

As discussed in Section 3.1, in our baseline pseudo real-time forecast analysis, we condition

on interest rate forecasts from the BCFF in both the estimation and forecast steps, in order

to incorporate additional information available in the era of central bank forward guidance.

This section investigates the impact of that choice. Figure 8 shows the RMSEs of the SW

and SWFF models when the forecasting is done without conditioning on BCFF interest

rate forecasts.18 The sample is the same as Figure 3 —April 2011 to April 2016— and we

continue to condition on the BCEI nowcasts of output growth and inflation, as well as on

the observed quarterly average interest rate in the first period.

The main takeaway of Figure 8 is that the SW RMSEs for output growth improve

substantially in the absence of interest rate expectations data, with a five-quarters-ahead

18For each real-time vintage, we continue to use the parameter estimates obtained from the estimation

with the FFR expectations data. However, Figure 15 in the Appendix for RMSEs shows that obtain very

similar results when do not use at all FFR expectations data, neither in producing the forecasts nor in the

estimation.
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Figure 8: RMSEs for SW and SWFF vs. Blue Chip, without conditioning on FFR

expectations
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Note: The top and bottom panels compare the RMSEs for the SW (top row, red circles) and SWFF (bottom row, red circles)
DSGE models with the Blue Chip (blue diamonds) for one through eight quarters ahead for output growth, inflation, and
interest rates. Output growth and inflation are expressed in Q/Q percent annualized terms, whereas interest rates are in
quarterly annualized percentage points. The N = n labels under each x-axis tick indicate the number of observations available
for both the BCEI and DSGE forecasts at that horizon. The forecasts included in these calculations are from April 2011 to
April 2016. The DSGE forecasts are conditional on the BCEI nowcasts for output growth and inflation. Section 3.3 provides
the details of the forecast comparison exercise.

RMSE of about 0.7, compared to nearly 0.9 with conditioning. SW’s RMSEs for inflation

improve as well, but to a lesser extent. The RMSEs for the SWFF model, on the contrary,

are very similar to those computed in Figure 3.

In order to understand the effect of conditioning on FFR expectations on the two models,

we again focus on a specific set of forecasts — those computed using the January 2012 vin-

tage. Figure 9 is the analogous of Figure 4, except that the DSGE projections are computed
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Figure 9: SW and SWFF forecasts using January 2012 data, without conditioning on FFR

expectations
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Note: The panels show the DSGE forecasts obtained using data available as of January 2012 (red solid), the January 2012
Blue Chip forecast (blue solid line); real-time data (black solid); and revised final data from November 1st, 2017 (gray dashed)
of output, inflation, and the interest rate. The DSGE forecasts are conditional on the BCEI nowcasts for output growth and
inflation. The top and bottom rows show the forecast for the SW and SWFF model, respectively. Output growth and inflation
are expressed in Q/Q percent annualized terms, whereas interest rates are in quarterly annualized percentage points.

without using FFR expectations. Clearly both DSGE models predict an earlier liftoff of the

federal funds rate relative to both the BCFF projections and ex-post outcomes. This is not

surprising: Blue Chip forecasters are aware of the Federal Reserve’s forward guidance while

the DSGE econometrician, without conditioning on either market or survey expectations, is

not (which is why in the NY Fed DSGE model we condition on federal funds rate expecta-

tions). We also note that SWFF projects a faster liftoff of the policy rate than SW. This is

not surprising in light of the fact that SW projects inflation to be (counterfactually) lower
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than SWFF, and that the estimated policy reaction function, which is the basis of the FFR

projections for the DSGE models, depends positively on inflation. This observation explains

why the RMSEs for the federal funds rate shown in Figure 9 are worse for SWFF than for

SW.

The differences in the DSGE forecasts for output growth and inflation between Figures 4

and 9 illustrate the effect of conditioning on FFR expectations. From the perspective of

the DSGE econometrician forward guidance can be interpreted in two different ways, as

either “Odyssean” or “Delphic” (see Campbell et al. (2012)). The Odyssean interpretation

amounts to anticipated future monetary policy accommodation — the policy “news” shocks

discussed in Section 2.1. The Delphic interpretation instead leads the econometrician to

revise her assessment of the state of the economy, which is of course latent in DSGE models:

the lower FFR projections are then interpreted as an indication that the state of the economy

is worse than previously estimated.

Both effect are at play in the DSGE projections. But the comparison of Figures 4

and 9 indicates that the Odyssean effect is very strong particularly for the SW model: In

Figure 9 the SW projections for output growth are still overly optimistic relative to ex-post

outcomes, but much less so than in Figure 4. The comparison of Figures 4 and 9 therefore

reveals that the SW model suffers from what Del Negro et al. (2012) called the “forward

guidance puzzle”: incorporating the accommodation resulting from forward guidance results

in overly optimistic projections for the economy. This also explains why the SW RMSEs

for real GDP growth shown in Figure 8 are smaller than those in Figure 3. For the SWFF

model the differences in both forecasts and RMSEs with and without conditioning on FFR

expectations are much more muted than for the SW model. This is both because the way

SWFF interprets forward guidance is different from SW, and because SWFF is less affected

by the “forward guidance puzzle”.19

3.4 Conditioning on Nowcasts

Del Negro and Schorfheide (2013) discuss the challenges facing the DSGE econometrician.

One well understood challenge is of course model misspecification (e.g., see Del Negro and

19This is partly because the SWFF model has higher nominal rigidities than the SW model (see Del Negro

et al., 2015a, and the model estimates in the Appendix). We should note that it is not straightforward to

assess the relative importance of Odyssean and Delphic effects, or to attribute the different responses across

models to forward guidance shocks to specific model features. We leave these questions to future research.
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Figure 10: RMSEs for SWFF vs. Blue Chip, without conditioning on nowcast
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Note: The panels compare the RMSEs for SWFF (red circles) with the Blue Chip (blue diamonds) for one through eight
quarters ahead for output growth, inflation, and interest rates. Output growth and inflation are expressed in Q/Q percent
annualized terms, whereas interest rates are in quarterly annualized percentage points. The N = n labels under each x-axis tick
indicate the number of observations available for both the BCEI and DSGE forecasts at that horizon. Forecast origins from
April 2011 to April 2016 only are included in these calculations. Section 3.4 provides the details of the forecast comparison
exercise.

Schorfheide, 2004; Del Negro et al., 2007). Another challenge arises from the limitations of

the econometrician’s information set—that is the set of observables used in estimating the

model and generating forecasts. Augmenting the set of observables with spreads, for instance,

as the SWFF model does, provides valuable information to the econometrician regarding

financial conditions. Similarly, conditioning on FFR expectations informs the econometrician

about the degree of future policy accommodation. A third challenge is given by the timeliness

of the econometrician’s information set: The majority of the data series used in the estimation

of our model becomes available at a quarterly frequency, and therefore does not include all the

information available at higher frequency, both “hard” (monthly releases of, say, inflation and

consumption) and “soft” (e.g., from surveys, such as the Institute for Supply Management

survey, known as ISM). Blue Chip forecasters do use this information to produce nowcasts

for output and inflation. For this reason the DSGE model current quarter forecasts stand to

benefit from conditioning on the nowcasts obtained from the Blue Chip survey. Similarly the

NY Fed forecasts discussed in Section 2 incorporate the nowcast from in-house forecasters.

How much does incorporating nowcast improve the DSGE forecasts? Figure 10 depicts

RMSEs for SWFF and the Blue Chip forecasts for output growth, inflation, and the nominal

federal funds rate without conditioning on nowcasts. The sample is the same as Figure 3

—April 2011 to April 2016— and we continue to condition on the BCFF FFR expectations.

Not surprisingly, the Blue Chip nowcasts are much more accurate than the DSGE’s for both

output growth and inflation. However, for output growth the RMSEs are quite similar to
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those in Figure 3 from horizon 2 onward, while for inflation the improvement associated

with including nowcasts persists for about 4 quarters. Therefore we confirm the results in

Del Negro and Schorfheide (2013) that the positive effect of conditioning on the nowcast on

inflation is much more persistent than the corresponding effect on GDP, which not surprising

in light of the different persistence in the two series.20

3.5 Whole Sample vs. Post-Great Recession

Figure 11: RMSEs for SWFF vs. Blue Chip, computed from whole sample (January 1992

to April 2016)
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Note: The panels compare the RMSEs for SWFF (red circles) with the Blue Chip (blue diamonds) for one through eight
quarters ahead for output growth, inflation, and interest rates. Output growth and inflation are expressed in Q/Q percent
annualized terms, whereas interest rates are in quarterly annualized percentage points. The N = n labels under each x-axis tick
indicate the number of observations available for both the BCEI and DSGE forecasts at that horizon. The forecasts included
in these calculations are from January 1991 to April 2016. The DSGE forecasts are conditional on the BCFF forecasts for the
federal funds rate, and the BCEI nowcasts for output growth and inflation. Section 3.5 provides the details of the forecast
comparison exercise.

The results so far, and much of the paper, focus on forecasting during the recovery from

the Great Recession, partly because this is the period for which we have forecasts from the

NY Fed DSGE model. This section turns to the question of how the DSGE models fared

across our entire available sample of 1992-2017 for the sake of comparison with the previous

literature on the accuracy of DSGE model forecasts for the U.S. As in the previous sections,

we condition on time T+1 BCEI forecasts of output and inflation. Interest rate expectations

are incorporated starting in 2008Q4, to match the beginning of the zero lower bound (ZLB)

period.

20As noted in Section 3.1 the nowcast is treated simply as T + 1 data, as opposed to a noisy measurement

of the forecasted variables at time T + 1 as in Del Negro and Schorfheide (2013). we do so because this is

the approach taken in producing the NY Fed DSGE forecasts.
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Figure 11 shows that the SWFF model’s performance is remarkably similar to that of

the Blue Chip forecasts across all horizons and variables. As far as output and inflation are

concerned, this finding is in line with that of Del Negro and Schorfheide (2013). Interest rate

projections are moderately worse in the short to medium run, but overall are comparable

in performance. This last point is notable given the lack of interest rate expectations from

1992-2008Q3, and indicates that the model is capable of producing reasonable interest rate

forecasts away from the zero lower bound.

Edge and Gürkaynak (2010) results showed that the accuracy of DSGE models’ forecasts

is comparable to to that of private forecasters. One could dismiss those findings on the

ground that they applied to the Great Moderation period, and easy period to forecast.21

These results shown here are notable because they document that the accuracy of DSGE

models’ forecasts is comparable to to that of private forecasters even though almost half

of the sample includes periods that are particularly difficult for DSGE models, such as the

Great Recession and its aftermath.

3.6 SWFF vs. Its Descendants

As described in Section 2.1, the main models used in producing the various internal policy

materials and forecasts were built on top of SWFF, mainly adding more observables (and

more feature to accommodate these observables). 22 In this section we ask to what extent

these choices changed the DSGE’s forecasting accuracy. Comparing the RMSEs from SWFF

in Figure 3 to the RMSEs shown below in Figure 12, we see that the near-term and medium-

term output growth forecast performance slightly declined from SWFF to SWFF+ and from

SWFF+ to SWFF++ whereas long-term forecasting performance (from h = 7 and beyond)

improved sizeably, even outperforming the Blue Chip forecast at that horizon. Near-term

and medium-term forecasts of inflation remained largely on par between SWFF and its

descendants, but in a similar fashion to the output growth forecasts, long-term performance

(from h = 6 and beyond) improved.

As can be seen by Figure 13, an example forecast from the fourth quarter of 2011, the output

growth forecasts for SWFF+ and SWFF++ are much more optimistic than the corresponding

SWFF forecast in Figure 4. In spite of this difference, inflation forecasts remain largely

21Del Negro and Schorfheide (2013)’s showed that this is still true if the sample is extended to 2011.
22The technical details of the additional features included in these models, SWFF+ and SWFF++, are in

sections A.4 and A.5 of the appendix respectively.
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Figure 12: RMSEs for SWFF+ and SWFF++ vs. Blue Chip
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Note: The top and bottom panels compare the RMSEs for the SWFF+ (top row, red circles) and SWFF++ (bottom row, red
circles) DSGE models with the Blue Chip (blue diamonds) for one through eight quarters ahead for output growth, inflation,
and interest rates. Output growth and inflation are expressed in Q/Q percent annualized terms, whereas interest rates are in
quarterly annualized percentage points. The N = n labels under each x-axis tick indicate the number of observations available
for both the BCEI and DSGE forecasts at that horizon. The forecasts included in these calculations are from April 2011 to
April 2016. The DSGE forecasts are conditional on the BCFF forecasts for the federal funds rate, and the BCEI nowcasts for
output growth and inflation. Section 3.6 provides the details of the forecast comparison exercise.

unaffected by the changes that were implemented in these two models, whose additional

features are outlined in technical detail in Sections A.4 and A.5.
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Figure 13: SWFF+ and SWFF++ forecasts using January 2012 data
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Note: The panels show the DSGE forecasts obtained using data available as of January 2012 (red solid), the January 2012
Blue Chip forecast (blue solid line); real-time data (black solid); and revised final data from November 1st, 2017 (gray dashed)
of output, inflation, and the interest rate. The DSGE forecasts are conditional on the BCFF nowcasts for the federal funds
rate and the BCEI nowcasts for output growth and inflation. The top and bottom rows show the forecast for the SWFF+ and
SWFF++ model, respectively. Output growth and inflation are expressed in Q/Q percent annualized terms, whereas interest
rates are in quarterly annualized percentage points.

4 Conclusions

The paper documents the accuracy of the projections of the New Fed DSGE model during

the recovery from the financial crisis. It finds that in the short and medium run —from one

through eight quarters ahead— the model’s RMSEs are comparable to those of the median

of both the Blue Chip and of the Survey of Professional Forecasters surveys. Relative to

the median of the FOMC’s Summary of Economic Projections, however, the NY Fed DSGE

model performs much better in terms of the accuracy of output growth forecasts, especially
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at longer horizons (three years ahead). It performs worse than the median Summary of

Economic Projections up to a two year horizon, but better at a three year horizon. The paper

then uses a pseudo real time forecasting exercise to assess what model features explain the

results. It finds that financial frictions play a major role, especially in terms of the projections

for economic activity, as they imply a slow recovery from financial crisis.
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A DSGE Model Descriptions

This section of the appendix contains the model specifications for SW, SWπ, SWFF , SW+,

and SW++, along with a description of how we construct our data, and a table with the

priors on the parameters of the various models.

A.1 SW

We include a brief description of the log-linearized equilibrium conditions of the (Smets

and Wouters (2007)) model to establish the foundation for explaining the later models.

We deviate from the original Smets-Wouters specification by detrending the non-stationary

model variables by a stochastic rather than a deterministic trend. This is done in order

to express the equilibrium conditions in a flexible manner that accommodates both trend-

stationary and unit root technology processes. The model presented below is the model

referred to in the paper as the SW model.

Let z̃t be the linearly detrended log productivity process, defined here as:

z̃t = ρz z̃t−1 + σzεz,t, εz,t ∼ N(0, 1) (1)

All non stationary variables are detrended by Zt = e
γt+ 1

1− α z̃t , where γ is the steady

state growth rate of the economy. The growth rate of Zt in deviations from γ, which is

denoted by zt, follows the process:

zt = ln(Zt/Zt−1)− γ =
1

1− α
(ρz − 1)z̃t−1 +

1

1− α
σzεz,t (2)

All of the variables defined below will be given in log deviations from their non-stochastic

steady state, where the steady state values will be denoted by *-subscripts.

A.1.1 Equilibrium Conditions

The optimal allocation of consumption satisfies the following Euler equation:



34

ct = − (1− he−γ)
σc(1 + he−γ)

(Rt − IEt[πt+1] + bt) +
he−γ

(1 + he−γ)
(ct−1 − zt)

+
1

(1 + he−γ)
IEt [ct+1 + zt+1] +

(σc − 1)

σc(1 + he−γ)

w∗L∗
c∗

(Lt − IEt[Lt+1]) . (3)

where ct is consumption, Lt denotes hours worked, Rt is the nominal interest rate, and πt is

inflation. The exogenous process bt drives a wedge between the intertemporal ratio of the

marginal utility of consumption and the riskless real return, Rt − IEt[πt+1], and follows an

AR(1) process with parameters ρb and σb. The parameters σc and h capture the relatiev

degree of risk aversion and the degree of habit persistence in the utility function respectively.

The optimal investment decision comes from the optimality condition for capital producers

and satisfies the following relationship between the level of investment it and the value of

capital, qkt , both measured in terms of consumption:

qkt = S ′′e2γ(1+βe(1−σc)γ)

(
it −

1

1 + βe(1−σc)γ
(it−1 − zt)−

βe(1−σc)γ

1 + βe(1−σc)γ
IEt[it+1 + zt+1]− µt

)
(4)

This relationship is affected by investment adjustment costs (S ′′ is the second derivative

of the adjustment cost function) and by the ”marginal efficiency of investment”, µt, an

exogenous process, which follows an AR(1) with parameters ρµ and σµ, and that affects

the rate of transformation between consumption and installed capital (see Greenwood et al.

(1998)).

The installed capital, which we also refer to as the capital stock evolves as:

k̄t =

(
1− i∗

k̄∗

)(
k̄t−1 − zt

)
+
i∗
k̄∗
it +

i∗
k̄∗
S ′′e2γ(1 + βe(1−σc)γ)µt (5)

where
i∗
k̄∗

is the steady state ratio of investment to capital. The parameter β captures the

intertemporal discount rate in the utility function of the households.

The arbitrage condition between the return to capital and the riskless rate is:

rk∗
rk∗ + (1− δ)

IEt[r
k
t+1] +

1− δ
rk∗ + (1− δ)

IEt[q
k
t+1]− qkt = Rt + bt − IEt[πt+1] (6)

where rkt is the rental rate of capital, rk∗ its steady state value, and δ the depreciation rate.
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The relationship between k̄t and the effective capital rented out to firms kt is given by:

kt = ut − zt + k̄t−1. (7)

where capital is subject to variable capacity utilization, ut.

The optimality condition determining the rate of capital utilization is given by:

1− ψ
ψ

rkt = ut. (8)

where ψ captures the utilization costs in terms of foregone consumption.

From the optimality conditions of goods producers it follows that all firms have the same

capital-labor ratio:

kt = wt − rkt + Lt. (9)

Real marginal costs for firms are given by:

mct = (1− α) wt + α rkt . (10)

where α is the income share of capital (after paying markups and fixed costs) in the produc-

tion function.

All of the equations mentioned above have the same form regardless of whether or not

technology has a unit root or is trend stationary. A few small differences arise for the

following two equilibrium conditions.

The production function under trend stationarity is:

yt = Φp (αkt + (1− α)Lt) + I{ρz < 1}(Φp − 1)
1

1− α
z̃t. (11)

The last term (Φp − 1)
1

1− α
z̃t drops out if technology has a stochastic trend because then

one must assume that the fixed costs are proportional to the trend.

The resource constraint is:

yt = gt +
c∗
y∗
ct +

i∗
y∗
it +

rk∗k∗
y∗

ut − I{ρz < 1} 1

1− α
z̃t, (12)

The term − 1

1− α
z̃t disappears if technology follows a unit root process.
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Government spending, gt, is assumed to follow the exogenous process:

gt = ρggt−1 + σgεg,t + ηgzσzεz,t (13)

The price and wage Phillips curves respectively are:

πt =
(1− ζpβe(1−σc)γ)(1− ζp)

(1 + ιpβe(1−σc)γ)ζp((Φp − 1)εp + 1)
mct

+
ιp

1 + ιpβe
(1−σc)γ

πt−1 +
βe(1−σc)γ

1 + ιpβe
(1−σc)γ

IEt[πt+1] + λf,t (14)

wt =
(1− ζwβe(1−σc)γ)(1− ζw)

(1 + βe(1−σc)γ)ζw((λw − 1)εw + 1)

(
wht − wt

)
− 1 + ιwβe

(1−σc)γ

1 + βe(1−σc)γ
πt +

1

1 + βe(1−σc)γ
(wt−1 − zt − ιwπt−1)

+
βe(1−σc)γ

1 + βe(1−σc)γ
IEt [wt+1 + zt+1 + πt+1] + λw,t (15)

where ζp, ιp, and εp are the Calvo parameter, the degree of indexation, and the curvature pa-

rameters in the Kimball aggregator for prices with the equivalent parameters with subscript

w corresponding to wages.

The variable wht corresponds to the household’s marginal rate of substitution between con-

sumption and labor and is given by:

1

1− he−z∗∗
(
ct − he−z

∗
∗ct−1 + he−z

∗
∗zt
)

+ νlLt = wht . (16)

where ηl is the curvature of the disutility of labor (equal to the inverse of the Frisch elasticity

in the basence of wage rigidities).

The mark-ups λf,t and λw,t follow exogenous ARMA(1, 1) processes:

λf,t = ρλfλf,t−1 + σλf ελf,t + ηλfσλf ελf ,t−1 (17)

λw,t = ρλwλw,t−1 + σλwελw,t + ηλwσλwελw,t−1 (18)

Lastly, the monetary authority follows a policy feedback rule:

Rt = ρRRt−1 + (1− ρR)
(
ψ1πt + ψ2(yt − yft )

)
+ ψ3

(
(yt − yft )− (yt−1 − yft−1)

)
+ rmt (19)
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where the flexible price/wage output yft is obtained from solving the version of the model

absent nominal ridigities (without equations (3)-(12) and (15)), and the residual rmt follows

an AR(1) process with parameters ρrm and σrm .

The exogenous component of the policy rule rmt evolves according to the following process:

rmt = ρrmr
m
t−1 + εRt +

K∑
k=1

εRk,t−k (20)

where εRt is the usual contemporaneous policy shock and εRk,t−k is a policy shock that is known

to agents at time t − k, but affects the policy rule k periods later, that is, at time t. As

outlined in Laseen and Svensson (2011), these anticipated policy shocks allow us to capture

the effects of the zero lower bound on nominal interest rates, as well as the effects of forward

guidance in monetary policy.

A.1.2 Measurement Equations

The SW model is estimated using seven quarterly macroeconomic time series, whose mea-

surement equations are given below:

Output growth = γ + 100(yt − yt−1 + zt)

Consumption growth = γ + 100(ct − ct−1 + zt)

Investment growth = γ + 100(it − it−1 + zt)

Real Wage growth = γ + 100(wt − wt−1 + zt)

Hours = l̄ + 100lt

Inflation = π∗ + 100πt

FFR = R∗ + 100Rt

(21)

where all variables are measured in percent, π∗ and R∗ measure the steady state levels of

net inflation and short term nominal interest rates, respectively, and l̄ represents the mean

of the hours (this variable is measured as an index).

The priors for the DSGE model parameters are the same as in Smets and Wouters (2007)

and are summarized in Panel I of the priors table listed in the SW++ section.
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A.2 SWπ

The SWπ model builds on SW by allowing the inflation to be time-varying. The time-varying

inflation target, π∗t , allows us to capture the dynamics of inflation and interest rates in the

estimation sample.

The time-varying inflation target evolves according to

π∗t = ρπ∗π∗t−1 + σπ∗επ∗,t (22)

where 0 < ρπ∗ < 1 and επ∗,t is an iid shock. π∗t is a stationary process, although the prior on

ρπ∗ forces this process to be highly persistent.

A.2.1 Measurement Equations

As in Aruoba and Schorfheide (2008) and Del Negro and Eusepi (2011), we use data on

long-run inflation expectations in the estimation of SWπ. This allows us to pin down the

target inflation rate to the extent that long-run inflation expectations contain information

about the central bank’s objective.

Thus there is an additional measurement equation for 10 year inflation expectations that

augments (21), given by

10y Infl. Expectations = π∗ + IEt

[
1

40

39∑
j=0

πt+j

]
(23)

A.3 SWFF

Financial frictions are incorporated into the SW model following the work of Bernanke et

al. (1999) and Christiano et al. (2009).

A.3.1 Equilibrium Conditions

This replaces (6) with the following equation for the excess return on capital, that is the

spread between the expected return on capital and the riskless rate, and the definition of

the return on capital, R̃k
t , respectively:
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IEt

[
R̃k
t+1 −Rt

]
= −bt + ζsp,b(q

k
t − k̄t − nt) + σ̃ω,t (24)

and

R̃k
t − πt =

rk∗
rk∗ + (1− δ)

rkt +
(1− δ)

rk∗ + (1− δ)
qkt − qkt−1 (25)

where R̃k
t is the gross nominal return on capital for entrepreneurs, nt is entrepreneurial equity,

and σ̃ω,t captures mean-preserving changes in the cross-sectional dispersion of ability across

entrepreneurs (see Christiano et al. (2009)) and follows an AR(1) process with parameters

ρσω and σσω .

The following equation outlines the evolution of entrepreneurial net worth:

n̂t = ζn,R̃k
t

(
R̃k
t − πt

)
− ζn,R̃k

t
(Rt−1 − πt) + ζn,qK(qkt−1 + k̄t−1) + ζn,nnt−1 −

ζn,σω
ζsp,σω

σ̃ω,t−1 (26)

A.3.2 Measurement Equations

SWFF ’s additional measurement equation for the spread (given below) augments the stan-

dard set of SW measurement equations (21) along with (23).

Spread = SP∗ + 100IEt

[
R̃k
t+1 −Rt

]
(27)

where SP∗ measures the steady state spread. Priors are specified for the parameters SP∗,

ζsp,b, ρσω , σσω , and the parameters F̄∗ and γ∗ (the steady state default probability and the

survival rate of entrepreneurs, respectively), are fixed.

A.4 SWFF+

The SW+ model augments the technology process, Z∗t , with a long-run component, Zp
t ,

such that Z∗t = e
1

1− α z̃tZp
t e
γt. Recall the previous specification of the growth rate of the

technology process (2). Now with an additional term, zpt = ln(Zp
t /Z

p
t−1), the growth rate of

the technology process follows:

zt = ln(Z∗t /Z
∗
t−1)− γ =

1

1− α
(ρz − 1)z̃t−1 +

1

1− α
σzεz,t + zpt (28)

where

zpt = ρzpz
p
t−1 + σzpεzp,t, εzp,t ∼ N(0, 1) (29)



40

A.4.1 Measurement Equations

SW+ adds an additional set of measurement equations for core PCE, the 10 year nominal

bond yield, and TFP.

Core PCE Inflation = π∗ + πt + epcet

10y Nominal Bond Yield = R∗ + IEt

[
1

40

40∑
k=1

Rt+k

]
+ e10y

t

TFP growth, demeaned = zt +
α

1− α
(ut − ut−1) + etfpt

(30)

All the e∗t processes follow exogenous AR(1) specifications, and can be thought of either as

measurement errors or some other unmodelered source of discrepancy between the model

and the data (e.g., risk premia for the long term nominal rate).

A.5 SWFF++

A.5.1 Measurement Equations

SW++ adds the additional measurement equation for GDI and modifies the equation for

GDP given in sub-section 21:

GDP growth = 100γ + (yt − yt−1 + zt) + egdpt − Cmee
gdp
t−1

GDI growth = 100γ + (yt − yt−1 + zt) + egdit − Cmee
gdi
t−1

(31)

The e∗t terms follow exogenous AR(1) specifications as similarly described in Section A.4.

Furthermore, we introduce correlation in the measurement errors for GDP and GDI, which

evolve as follows:

egdpt = ρgdpe
gdp
t−1 + σgdpε

gdp
t , εgdpt ∼ i.i.d.N(0, 1)

egdit = ρgdie
gdi
t−1 + +%gdpσgdpε

gdp
t + σgdiε

gdi
t , εgdit ∼ i.i.d.N(0, 1)

We assume that Cme = 1. The measurement errors for GDP and GDI are thus stationary in

levels, and enter the observation equation in first differences (e.g. εgdpt − ε
gdp
t−1 and εgdit − ε

gdi
t−1).

GDP and GDI are also cointegrated as they are driven by a common stochastic trend.
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B Data Transformation

The data are transformed following Smets and Wouters (2007), with the exception of the

civilian population data, which are filtered using the Hodrick-Prescott filter to remove jumps

around census dates. For each financial variable, we take quarterly averages of the annualized

daily data and divide by four. Let ∆ denote the temporal difference operator. Then:

GDP growth = 100 ∗∆LN((GDP/GDPDEF )/CNP16OV )

GDI growth = 100 ∗∆LN((GDI/GDPDEF )/CNP16OV )

Consumption growth = 100 ∗∆LN((PCEC/GDPDEF )/CNP16OV )

Investment growth = 100 ∗∆LN((FPI/GDPDEF )/CNP16OV )

Real wage growth = 100 ∗∆LN(COMPNFB/GDPDEF )

Hours worked = 100 ∗ LN((AWHNONAG ∗ CE16OV/100)/CNP16OV )

GDP deflator inflation = 100 ∗∆LN(GDPDEF )

Core PCE inflation = 100 ∗∆LN(JCXFE)

FFR = (1/4) ∗ FEDERAL FUNDS RATE

FFRe
t+k|t = (1/4) ∗ BLUE CHIP k-QUARTERS AHEAD FFR FORECAST

10y inflation exp = (10-year average CPI inflation forecast− 0.50)/4

Spread = (1/4) ∗ (Baa Corporate− 10 year Treasury)

10y bond yield = (1/4) ∗ (10 year Treasury)

TFP growth, demeaned = (1/4) ∗ (Fernald’s TFP growth, unadjusted, demeaned)/(1− α)

In the long-term inflation expectation transformation, 0.50 is the average difference be-

tween CPI and GDP annualized inflation from the beginning of the sample to 1992.

C Inference, Prior and Posterior Parameter Estimates

We estimate the model using Bayesian techniques. This requires the specification of a

prior distribution for the model parameters. For most parameters common with Smets and

Wouters (2007), we use the same marginal prior distributions. As an exception, we favor a

looser prior than Smets and Wouters (2007) for the quarterly steady state inflation rate π∗; it

is centered at 0.75% and has a standard deviation of 0.4%. Regarding the financial frictions,

we specify priors for the parameters SP∗, ζsp,b, ρσω , and σσω , while we fix the parameters

corresponding to the steady state default probability and the survival rate of entrepreneurs,

respectively. In turn, these parameters imply values for the parameters of (??). Information

on the priors and posterior mean is provided in Table 3.



42

Table 3: Parameter Estimates

SWFF Prior SWFF Posterior SW Posterior

Parameter Type Mean SD Mean 90.0% LB 90.0% UB Mean 90.0% LB 90.0% UB

Steady State

100γ N 0.400 0.100 0.406 0.382 0.431 0.367 0.320 0.414

α N 0.300 0.050 0.142 0.112 0.172 0.143 0.115 0.171

100(β−1 − 1) G 0.250 0.100 0.127 0.062 0.193 0.168 0.071 0.265

σc N 1.500 0.370 0.776 0.614 0.937 1.063 0.854 1.270

h B 0.700 0.100 0.521 0.428 0.615 0.611 0.531 0.690

νl N 2.000 0.750 2.574 1.741 3.410 2.161 1.278 3.005

δ - 0.025 0.000 0.025 0.025 0.025 0.025 0.025 0.025

Φ N 1.250 0.120 1.582 1.444 1.713 1.559 1.435 1.690

S′′ N 4.000 1.500 3.325 1.813 4.717 6.590 4.927 8.197

ψ B 0.500 0.150 0.684 0.562 0.821 0.759 0.626 0.896

L̄ N -45.000 5.000 -46.042 -48.189 -43.815 -45.106 -47.011 -43.251

λw - 1.500 0.000 1.500 1.500 1.500 1.500 1.500 1.500

π∗ G 0.750 0.400 1.151 0.808 1.490 0.681 0.526 0.839

g∗ - 0.180 0.000 0.180 0.180 0.180 0.180 0.180 0.180

Nominal Rigidities

ζp B 0.500 0.100 0.926 0.903 0.950 0.844 0.799 0.888

ζw B 0.500 0.100 0.923 0.905 0.942 0.856 0.811 0.904

ιp B 0.500 0.150 0.294 0.139 0.443 0.223 0.092 0.345

ιw B 0.500 0.150 0.445 0.256 0.633 0.484 0.279 0.687

εp - 10.000 0.000 10.000 10.000 10.000 10.000 10.000 10.000

εw - 10.000 0.000 10.000 10.000 10.000 10.000 10.000 10.000

Policy

ψ1 N 1.500 0.250 1.148 1.039 1.250 1.847 1.584 2.100

ψ2 N 0.120 0.050 0.004 -0.005 0.013 0.110 0.064 0.156

ψ3 N 0.120 0.050 0.193 0.160 0.225 0.207 0.171 0.241

ρ B 0.750 0.100 0.724 0.693 0.754 0.868 0.840 0.897

ρrm B 0.500 0.200 0.182 0.106 0.257 0.257 0.170 0.342

Financial Frictions

F (ω) - 0.030 0.000 0.030 0.030 0.030 - - -

Note: N, B, G, and IG stand, respectively, for Normal, Beta, Gamma, and Inverse Gamma distributions. For Inverse Gamma
prior mean and SD, mode τ and degrees of freedom ν are reported.
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Table 3: Parameter Estimates

SWFF Prior SWFF Posterior SW Posterior

Parameter Type Mean SD Mean 90.0% LB 90.0% UB Mean 90.0% LB 90.0% UB

spr∗ G 2.000 0.100 1.914 1.775 2.054 - - -

ζspb B 0.050 0.005 0.052 0.045 0.059 - - -

γ∗ - 0.990 0.000 0.990 0.990 0.990 - - -

Exogenous Processes

ρg B 0.500 0.200 0.983 0.974 0.992 0.978 0.965 0.992

ρµ B 0.500 0.200 0.874 0.827 0.924 0.713 0.623 0.801

ρz B 0.500 0.200 0.940 0.918 0.964 0.978 0.960 0.995

ρλf B 0.500 0.200 0.725 0.594 0.862 0.858 0.794 0.924

ρλw B 0.500 0.200 0.403 0.135 0.668 0.980 0.966 0.994

ηλf B 0.500 0.200 0.637 0.461 0.816 0.731 0.596 0.866

ηλw B 0.500 0.200 0.421 0.176 0.656 0.972 0.957 0.988

ηgz B 0.500 0.200 0.796 0.622 0.974 0.796 0.635 0.974

σg IG 0.100 2.000 2.919 2.677 3.147 2.891 2.660 3.118

σµ IG 0.100 2.000 0.401 0.320 0.474 0.365 0.301 0.431

σz IG 0.100 2.000 0.509 0.465 0.554 0.517 0.473 0.563

σλf IG 0.100 2.000 0.145 0.126 0.164 0.128 0.106 0.150

σλw IG 0.100 2.000 0.381 0.336 0.425 0.356 0.326 0.386

ρb B 0.500 0.200 0.950 0.944 0.957 0.888 0.857 0.920

σb IG 0.100 2.000 0.035 0.029 0.040 0.094 0.078 0.108

ρσω B 0.750 0.150 0.982 0.971 0.990 - - -

ρπ∗ - 0.990 0.000 0.990 0.990 0.990 - - -

σσω IG 0.050 4.000 0.067 0.060 0.074 - - -

σπ∗ IG 0.030 6.000 0.018 0.014 0.022 - - -

σrm IG 0.100 2.000 0.185 0.172 0.199 - - -

Note: N, B, G, and IG stand, respectively, for Normal, Beta, Gamma, and Inverse Gamma distributions. For Inverse Gamma
prior mean and SD, mode τ and degrees of freedom ν are reported.
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D Additional Results

D.1 Financial Frictions vs. Time-Varying π∗

Figure 14: RMSEs for SWπ model
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Note: The panels compare the RMSEs for the SWπ DSGE model (red circles) with the Blue Chip (blue diamonds) for one
through eight quarters ahead for real output growth, GDP deflator inflation, and interest rates. Output growth and inflation
are expressed in Q/Q percent annualized terms, whereas interest rates are in quarterly annualized percentage points. The
N = n labels under each x-axis tick indicate the number of observations available for both the BCEI and DSGE forecasts at
that horizon. Forecast origins from January 2011 to January 2016 only are included in these calculations.
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D.2 Estimating and Forecasting without FFR Expectations

Figure 15: RMSEs for SWFF model estimated and forecasted without FFR expectations
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Note: The panels compare the RMSEs for the SWFF DSGE model (red circles) with the Blue Chip (blue diamonds) for one
through eight quarters ahead for real output growth, GDP deflator inflation, and interest rates. Output growth and inflation
are expressed in Q/Q percent annualized terms, whereas interest rates are in quarterly annualized percentage points. The
N = n labels under each x-axis tick indicate the number of observations available for both the BCEI and DSGE forecasts at
that horizon. Forecast origins from January 2011 to January 2016 only are included in these calculations. In this exercise, we
re-estimated and forecasted the SWFF model without FFR expectations data. Compare to the RMSEs in Figure 8, which were
computed from the baseline parameter draws (estimated using FFR expectations data).
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