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This paper introduces novel techniques for solving multidimensional dynamic stochas-

tic optimization problems which commonly occur in economics and related disciplines.

We (i) present a new efficient method to approximate value functions, (ii) develop an

error control scheme that allows us to verify the accuracy of value function iterations,

and (iii) quantify the dependence on parameters by computing response surfaces, a ba-

sic tool for uncertainty quantification. This is all possible because our effecient use

of parallel dynamic programming methods to solve those types of models. As an ap-

plication of our methodology, we consider a prominent problem in environmental eco-

nomics—determining the optimal policy for addressing potential adverse impacts of car-

bon emissions on economic output. Using plausible ranges for several key parameters we

obtain an optimal carbon price ranging between $40 and $400 per ton. Our study shows

that with the appropriate methods, complex problems of optimal decision making under

various types of uncertainties can be addressed, and decisively refutes the pessimism one

often hears about the possibility of solving such models.
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1 Introduction

Dynamic programming (DP) is the foundation of dynamic economics and has been ap-

plied to a large range of fields in economics and finance (e.g., Bellman 1957; Lucas et

al. 1989; Puterman 2005). Problems with a finite number of states and choices can

be solved exactly, as can some with special functional form assumptions. However, this

covers only a small portion of the range of DP problems in economics, finance and oper-

ations research, as well as in other fields. In general, the solution to a DP problem with

continuous states can only be approximated. This paper combines modern numerical

methods with the advanced massively parallel hardware to solve a DP problem from the

climate change literature that has been viewed as impossible.

Our DP problems are in a finite horizon evolving system and have expanding state

domains over time. Value function iteration is the traditional and most popular method

for solving finite-horizon decision-making problems and it can also be used for solving

infinite-horizon problems after setting a stopping criterion (see e.g., Judd 1998; Cai 2010).

One basic method in value function iteration is to transform the problem into one with

a finite number of states, but that method only works well for small problems. Another

technique is to solve the DP problem at a finite grid of points, and using multilinear

interpolation to approximate the value function at points not in the grid. This approxi-

mation method is not very efficient if the true value function is smooth- an observation

which motivated Johnson et al. (1993) to instead interpolate using tensor-product cubic

splines. To further reduce the computational costs, Chen et al. (1999) combined orthog-

onal arrays with multivariate adaptive regression splines (Friedman 1991) to efficiently

solve multidimensional problems.

It is well-known that there there is a curse of dimensionality for general DP problems

(see Rust 1997 and Rust et al. 2002). Fortunately, such worst-case analyses are not

relevant for many problems in economics. A key task in solving DP problems is approx-

imating the value function. There is a curse of dimensionality for the general problem of

approximating multivariate continuous-functions but Griebel and Wozniakowski (2006)

show that there is no curse of dimensionality in approximating functions with sufficient

smoothness. Many DP problems in economics have smooth value functions, making
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the Griebel-Wozniakowski approach more relevant than the approaches to general DP

problems.

But for DP problems with continuous state and action variables and smooth value

functions, one criticism for value function iteration in the literature is that it lacks an error

control scheme if we use continuous function approximation on value functions, because

the value function approximation may not preserve concavity of true value function (Cai

and Judd 2013, 2014, 2015). This paper introduces basic verification methods for the

value function iteration approach and provide tools to assess the accuracy of solution to

address the criticism.

In economics, many studies rely on models that can be solved analytically. This has

the advantage of allowing an accurate sensitivity analysis of these models. However,

simple models that can be solved analytically are severely limited by whether they can

realistically account for the problem they study. In contrast, numerical methods allow

for formulating and solving much more complex models in economics, models which

incorporate—for example—multidimensionality, non-linearities and uncertainty in the

decision making process. However, typically in numerical work, economists employ strong

simplifications of their models. Those simplifications include the log-linearization of

the underlying dynamic systems, the reduction of the number of decision periods, the

restriction to a simple steady-state analysis. One key reason for those simplifications is

computational limitation. This is still a widely accepted argument for not engaging in

more serious (computational) research. While it is true that past analyses have been

hampered by both software and hardware limitations, advances over the past twenty

years now make it possible to examine important economic questions without making

unappealing assumptions for the sake of tractability. Currently, mainstream research in

economics does not live up to the standards of of numerical algorithms and computational

hardware.

However, Cai et al. (2015d) provide a parallel DP scheme on a computational grid

for solving large-scale dynamic optimization problems that require a very large amount

of computing resources including CPU time and memory, making them impossible to be

solved on personal computers. It is run on a high-throughput system called HTCondor,

a management tool for identifying, allocating and managing available resources to solve
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large distributed computations on existing networks of computers that currently exist

in department and college networks. While HTCondor is freely available, its latency in

communication poses a limit in running huge applications requiring a large amount of

compute cores and communication among them.

Supercomputing is a high-performance computing tool on a supercomputer allowing

rapid communication among processors. Modern day supercomputers have petascale

computing power and even exascale computing will be available in a near future, so

that we can apply parallel DP algorithms on supercomputers to solve the large-scale

DP problems. Our work is mainly implemented on the Blue Water supercomputer,

located in the University of Illinois at Urbana-Champaign and its National Center for

Supercomputing Applications. We adapt the master-worker parallel DP algorithm in Cai

et al. (2015d) to its supercomputing version. Our code is written in Fortran and uses

MPI (message passing interface) for communication among processes.

Moreover, parallelism makes it possible to conduct extensive explorations of the pa-

rameter space and ascertain the sensitivity of any results to parameters about which we

have limited information, as we often do not know the true parameters of a real world

problem, a fact which calls for examining more than just one case. This method—also

called uncertainty quantification—is standard in many disciplines, such as engineering

and applied physics.1 In economics, numerical studies have been limited (for computa-

tional reasons) in their analysis of how their results depend on uncertain parameters.

Yet, addressing parametric uncertainty is important for any economic study as in most

cases, we do not know the true parameter values. Disagreements over models, data,

and estimation procedures tell us that the uncertainty is greater than the standard error

computed for any single model. We show that the combination of hardware and software

used in this paper has the ability to do nontrivial multidimensional uncertainty quantifi-

cation by resolving the same DP problem over an efficiently chosen set of points in the

parameter space. Finally, the tools do not exploit any special structure of the example

and clearly can be used to solve a large array of DP problems that arise in economics.
1There are alternative methods to deal with parameter uncertainty under different assumptions, such

as Bayesian learning (see e.g., Kelly and Kolstad 1999) and robust decision making (see e.g., Hansen and
Sargent 2005, 2007a,b; Brock et al. 2007a,b; Anderson et al. 2014; Cai and Sanstad 2015). But these
methods are more time-consuming and challenging and also out of the scope of this paper, we do not
pursue them.
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The main purpose of this study is to offer a set of tools for modelers interested in

solving complex dynamic models of various types of uncertainties. For that purpose

we provide various computational techniques and implement them with software and

algorithms that can handle a wide rage of problems. We introduce a novel simplicial

complete Chebyshev approximation that is much more efficient than complete Cheby-

shev approximation. We also present novel methods of verifying the accuracy of the

computations, such as a method of a posteriori error measurement, for solving thousands

of multidimensional DP problems with high accuracy, a large state space, and hundreds

of decision periods. In addition, we address the analysis of substantial uncertainty about

the key parameters, and extend the DP algorithm to allow performing an extensive un-

certainty quantification. This will allow researchers to ascertain the implications of their

preferred parameter choices. Furthermore, we demonstrate how to utilize the finding

from an extensive uncertainty quantification to fit a multi-dimensional response surface.

This is conducted by a Smolyak approximation method (Smolyak 1963) which we find

to be efficient. In contrast to Bayesian methods for which moments from a single belief

are interesting only to those who have those beliefs, a response surface can be used by

anyone using their own beliefs and computing the corresponding moments.

The novel methods presented in this paper are highly modular at many levels, such as

the length of a time period, the degree of aggregation of the model (sub)systems, and the

computational components which can be utilized. As a consequence, these methods are

ready to be basically applied to any DP problems, including far more complex problems

of optimal decision making in various areas of economics, finance, and decision science

in general. One field of application is macroeconomics, in which most analyses work

with models where none of the primitives depend on calendar time. Our methods allow

researcher to also solve non-stationary problems such as ones with unit roots (e.g., Cai

et al. 2015a). Other examples of applications of our methods include multi-dimensional

stochastic optimal growth models (e.g., Den Haan et al. 2011), stochastic life-cycle

consumption problems (e.g., Cocco et al. 2005), and dynamic portfolio optimization

problems (e.g., Cai et al. 2013; Gupta and Murray 2005; Infanger 2006).

Another important feature is the flexibility of our algorithm. It might be possible to

solve a specific application with a simpler and model-specific algorithm. That algorithm
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however, will have little value for any substantively different applications. For example

we only assume concave utility and general laws of motion for states. Our software thus,

may be more than what is needed for our application below. However, we have borne

a large fixed cost and created a tool that can now be utilized to solve a vast array of

problems. Different models then become just different parameter choices and different

simple functions for utility and output.

We next turn to a specific application of our methods. Our objective is to determine

optimal carbon pricing in a canonical dynamic integrated model of the climate and

economy. One crucial factor of our application is that we incorporate intrinsic and

parametric uncertainty.

Typically cost-benefit computations of carbon emissions are conducted with the help

of so-called integrated assessment models that explicitly model the interactions between

climate and economic systems. Integrated assessment models usually have many state

variables and thus dimensions. It is often argued that a stochastic analysis of a 6-

dimensional integrated assessment model over several hundred decision periods are com-

putationally too expensive—if not impossible—due to the curse of dimensionality or

other computational complexities (e.g., Webster et al. 2012; Jensen and Traeger 2014).

In fact, recently Newbold et al. (2013) define low-dimensional analyses of uncertainty as

the frontier of integrated assessment modeling. Such a clear assessment of the research

frontier in climate economics makes the latter a suitable application for our method-

ology. With the example of computing optimal climate policies under uncertainty we

challenge this assessment and show that when we combine modern methods from numer-

ical mathematics with the state-of-the art hardware, it is now possible to solve dynamic

programming problems that are currently viewed as impossible.

For our analysis, we take an integrated assessment model, DSICE (Cai et al. 2015a),

a full-dimensional dynamic stochastic general equilibrium version of DICE (Nordhaus

2008), a well-known model currently used by the United States government to design

climate policy (IWG 2010). Not only is the DSICE framework a stochastic extension of

earlier versions of DICE, but also DSICE can be used to solve many integrated assessment

models of comparable dimensionality. No computational framework is infinitely powerful,

but it is clear that DSICE is far less limited by tractability concerns than earlier integrated
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assessment models, because our computational method is flexible enough to solve far

larger models when using parallel computing. In that context, our algorithm is fast

enough and will enable us to do wide-ranging parameter sweeps to address parameter

uncertainty.

We run several tests to measure the performance of our solution algorithm. Our first

step is to test if our numerical DP algorithm can replicate the true solution of the de-

generated deterministic DSICE example. We find that the true solution is approximated

with high accuracy. For the stochastic model version with default parameter settings we

compute stepwise errors for the policy functions and the value function. We find that

the relative errors are small.

We are limited by the current state of knowledge about the critical parameters about

the economics and climate system. Also, different decision-makers usually have different

beliefs about the implications of parameter vectors. In a recent assessment of of the

literature, Pindyck (2013) points out that uncertainty in integrated assessment mod-

els, if incorporated at all, is usually analyzed by running Monte Carlo simulations in

which probability distributions are attached to one or more parameters. Therefore, in

a next step we perform an uncertainty quantification analysis to deal with parametric

uncertainty. In accordance with the literature, we identify four key features which are

not known with precision: climate sensitivity, utility discount rate, growth rate of pro-

ductivity and the damage function. Our uncertainty quantification analysis produces a

range of the social cost of carbon between $21 per ton and $1,141 per ton (in 2005 USD).

Moreover, from uncertainty quantification we produce a response surface function to give

an estimated initial social cost of carbon (SCC) over the four-dimensional hypercube, so

that policy makers with various beliefs about the uncertain parameters can immediately

know the corresponding initial SCC.

The structure of this paper is as follows: In Section 2 we briefly review numerical

dynamic programming methods. Section 3 introduces the new simplicial complete Cheby-

shev approximation method. Section 4 presents the new error control methods . Section

5 describes the algorithms for uncertainty quantification and surface response function.

Section 6 reviews DSICE briefly and presents its dynamic programming problem. Sec-

tion 7 describes various uncertain parameters in DSICE for uncertainty quantification.
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Section 8 illustrates the results of the benchmark example of DSICE. Section 9 shows

the results of uncertainty quantification for DSICE. Section 10 concludes.

2 Numerical Dynamic Programming

A dynamic programming (DP) problem is expressed in the Bellman equations that define

value functions (Bellman 1957). Let x be a vector of continuous states. Let Vt(x) denote

the value function at time t ≤ T , where the terminal value function VT (x) is known. Let

Ft be the transition laws of x at time t, and the next-stage state is denoted x+. Let a

be a vector of action/control variables and it should be in a feasible set D(x, t) at time

t. Let ut(x,a) be the utility function at time t. The Bellman equation is

Vt(x) = G(Vt+1)(x) ≡ max
a∈D(x,t)

ut(x,a) + βHt
(
Vt+1(x

+)
)
,

s.t. x+ = Ft(x,a, ω),

where G is the Bellman operator, ω is a vector of random variables, β is a discount factor,

and Ht is a functional operator at time t. A typical functional operator for Ht is Et, the

expectation operator conditional on time-t information. In our model, it is

Ht (Vt+1) =

[
Et

{
V

1−γ
1− 1

ψ

t+1

}] 1− 1
ψ

1−γ

.

We first present a general overview of the numerical methods we use. For DP prob-

lems, if state variables and control variables are continuous such that value functions

are also continuous, then we have to use some approximation for the value functions,

since computers cannot model the entire space of continuous functions. We focus on

using a finitely parameterized collection of functions to approximate value functions,

V (x) ≈ V̂ (x; b), where b is a vector of parameters. The functional form V̂ may be a

linear combination of polynomials, or it may represent a rational function or neural net-

work representation, or it may be some other parameterization especially designed for the

problem. After the functional form is fixed, we focus on finding the vector of parameters,

b, such that V̂ (x; b) approximately satisfies the Bellman equation. Numerical DP with
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value function iteration can solve the Bellman equation approximately (Judd 1998).

The following is the algorithm of parametric dynamic programming with value func-

tion iteration for finite horizon problems.

Algorithm 1. Numerical Dynamic Programming with Value Function Iteration for Fi-

nite Horizon Problems

Initialization. Choose the approximation nodes, Xt = {xi,t : 1 ≤ i ≤ Nt} ⊂ Rd for

every t < T , and choose a functional form for V̂ (x; b). Let V̂ (x; bT ) ≡ VT (x).

Then for t = T − 1, T − 2, . . . , 0, iterate through steps 1 and 2.

Step 1. Maximization step. Compute

vi = max
a∈D(xi,t)

ut(xi,a) + βHt
(
V̂
(
x+; bt+1

))
(1)

s.t. x+ = Ft(xi,a, ω),

for each xi ∈ Xt, 1 ≤ i ≤ Nt.

Step 2. Fitting step. Using an appropriate approximation method, compute the bt such

that V̂ (x; bt) approximates (xi, vi) data.

There are three main components in numerical DP: optimization, approximation, and nu-

merical integration. In the following we focus on discussing approximation and omit the

introduction of optimization and numerical integration. Detailed discussion of numerical

DP can be found in Cai (2010), Cai and Judd (2014, 2015), Judd (1998), and Rust (2008).

See Appendix B for an additional discussion of approximation. In the next section, we

will introduce a multidimensional simplicial complete Chebyshev approximation method.

There are some alternative approaches for solving DP problems. For example, ap-

proximatie dynamic programming methods (see e.g. Bertsekas 2012; Powell 2011; Powell

and Van Roy 2004) are designed to solve huge-dimensional problems by losing some

accuracy based on simulation. An approximate DP initializes a value function approx-

imation V 0
t (x) at first. In its n-th iteration, with a given initial state xn0 , it computes

vnt = G(V n−1
t+1 )(xnt ) and its corresponding optimal action, and then get the next state

using a sample realization of innovation. For a problem with discrete states, a basic
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approximate DP lets V n
t (x) = V n−1

t (x) for all x 6= xnt and V n
t (xnt ) = vnt . However, for

a problem with continuous actions, if it uses a continuous value function approximation

V n
t (x), then we need to solve a nonlinear programming problem for the Bellman equation

V n+1
t = G(V n

t ), but it is possible that V n
t (x) does not preserve the shape of value function

(i.e., V n
t (x) may be not concave), so that it is hard to get the global maximizer of G(V n

t )

(see Cai and Judd (2014) for a discussion about the importance of shape-preservation

in DP). That is, the approximate DP may not converge for a problem with continuous

actions if it uses a continuous value function approximation, while our numerical DP

works well for problems with continuous actions (Cai 2010; Cai and Judd 2014, 2015).

Thus, approximate DP methods are typically used for solving problems with discrete

actions. See Bertsekas (2012) and Powell (2011) for detailed discussion.

Other approaches for DP problems include policy function iteration (see e.g. Judd

1998) for infinite-horizon problems; stochastic programming methods (see e.g. Kall and

Wallace 1994) for several-stage problems; linear programming methods (De Farias and

Van Roy 2003; Trick and Zin 1997) and nonlinear programming methods (Cai et al.

2015c) for low-dimensional problems. Due to the limits of these approaches, we apply

parallel value function iteration (Cai et al. 2015d) in this paper as it is the most efficient

one for our climate policy problems to the best of our knowledge.

3 Simplicial Complete Chebyshev Approximation

The complete degree n Chebyshev polynomial approximation method (described in Ap-

pendix B) is an isotropic approximation method; that is, the polynomial complexity of

the function is the same in any direction. In a d-dimensional state space, the number of

terms of the complete Chebyshev approximation is only
(
n+d
d

)
, a polynomial of d with

the maximal degree n. Thus, it has no so-called curse-of-dimensionality and then it is

tractable for some large problems. For example, the number of terms for quadratic poly-

nomial approximation in 100-dimensional state space is only 5,151. Unfortunately, the

growth in n limits the practicality of the complete polynomials. For example, a complete

cubic polynomial in 100 dimensions has 176,851 terms. In the following we introduce a

simplicial complete approximation to reduce the number of terms significantly.
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3.1 Basis for Simplicial Complete Chebyshev Approximation

In many problems the value function is significantly nonlinear in some dimensions but

much less nonlinear in others. This allows us to use different polynomial degrees in

different dimensions, leading to an anisotropic approximation that is a subset of complete

polynomials.

We describe a particular kind of anisotropic approximation, which we call the sim-

plicial complete approximation, that works well in our climate change policy examples

in later sections, and has substantial potential for more general dynamic programming

problems. Suppose the maximal degree for dimension i is ni, then the simplicial complete

Chebyshev approximation for V (x) is

V̂ (x; b) =
∑

α≥0,
∑d
i=1 αi/ni≤1

bαφα (Z(x)) ,

where α = (α1, . . . , αd) represents a nonnegative integer vector, and φα(Z(x)) is a Cheby-

shev basis function in Rd where Z(x) is a linear transformation of x ∈ [xmin,xmax] ⊂ Rd

so that Z(x) ∈ [−1, 1]d (see Appendix C for details). Here,
∑d

i=1 αi/ni ≤ 1 represents

those points with nonnegative integer values below or on the hyperplane
∑d

i=1 xi/ni = 1

that contains points (n1, 0, ..., 0), ..., (0, ..., 0, nd).

3.2 Regression for Simplicial Complete Chebyshev Approximation

After we choose the simplicial complete Chebyshev approximation for V (x) with degrees

(n1, ..., nd), we know how many terms are used for the approximation. We denote the

number of approximation terms by J . In the numerical dynamic programming algorithm,

we should choose approximation nodes in the approximation domain, and then use the

values on the nodes to compute the Chebyshev coefficients b. For the number of ap-

proximation nodes N , we only require N ≥ J for Lagrange fitting, or N ≥ J/(d+ 1) for

Hermite fitting (Cai and Judd 2015). But usually N should be much bigger than J (or

J/(d+ 1) for Hermite fitting) in order to have a globally good approximation. A general

fitting method is the least squares method, but it will be too time-consuming when N

and/or J are large.
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To compute the Chebyshev coefficients b quickly, we can choose mi Chebyshev nodes{
x
(ki)
i : ki = 1, . . . ,mi

}
in the i-th dimension interval [xmin,i, xmax,i] to construct the

simplicial complete Chebyshev polynomial approximation directly. Thus, the number of

approximation nodes is N =
∏d
i=1mi. Usually it is good to let mi = ni + 1 if the degree

for the i-th dimension is ni. With the nodes xk =
(
x
(k1)
1 , . . . , x

(kd)
d

)
for k = (k1, . . . , kd)

and ki = 1, . . . ,mi, we can compute the coefficients of the simplicial complete Chebyshev

approximation for V (x) on [xmin,xmax]:

bα =
2d̃∏d
i=1mi

∑
1≤ki≤mi,1≤i≤d

vkφα(Z(xk)), (2)

where vk = V (xk), and d̃ =
∑d

i=1 1αi>0 with

1αi>0 =


1, if αi > 0,

0, if αi = 0.

3.3 Efficiency of Simplicial Complete Chebyshev Approximation

From the maximization step of Algorithm 1, we see that the efficiency of the numerical

dynamic programming algorithm depends on the number of approximation nodes, N .

Moreover, the objective function of the maximization problem contains evaluation of the

next-period approximated value function, so the efficiency of the algorithm also depends

on the number of approximation terms, J . With a rough estimate, the computational

load of the algorithm is proportional to NJ .

Since every approximation term bαφα (Z(x)) has a product of d one-dimensional basis

functions for φα (see Appendix C), the computational complexity of the algorithm seems

to be proportional to N × J × d. However, the one-dimensional basis functions include

a degenerated degree-zero function which is one everywhere, so the number of non-

degenerated multiplications for bαφα (Z(x)) will also not exceed n = maxdi=1 ni for the

simplicial complete Chebyshev approximation. Therefore, the computational complexity

is proportional to N×J×min(n, d). This means that if we had a high-dimensional prob-

lem but could use the same number of basis functions and nodes for a low-dimensional

problem, then the high-dimensional problem could have less computational complexity
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than the low-dimensional problem. Since we only require N ≥ J for Lagrange fitting, or

N ≥ J/(d + 1) for Hermite fitting (Cai and Judd 2015), we can choose sparse grid to

break the curse-of-dimension in choosing approximation nodes. That is, our numerical

DP method could have no curse-of-dimension in both approximation methods and nodes.

Table 1 lists the numbers of approximation terms and nodes (i.e., J and N) for

some cases in a six-dimensional continuous state space (i.e., d = 6) which is used in

this paper. The first six columns are the degrees n1, ..., n6 for each dimension. For the

approximation nodes, we choose the tensor grid of (ni + 1) Chebyshev nodes in the i-

the dimension for simplicity, so N =
∏6
i=1(ni + 1). The last column lists the speedup

relative to corresponding complete Chebyshev polynomials with the highest degree among

n1, ..., n6, i.e.,

(n+ 1)6 ×
(
n+6
6

)
NJ

=
(n+ 6)!(n+ 1)6

n!6!NJ
=

(n+ 6)(n+ 5)(n+ 4)(n+ 3)(n+ 2)(n+ 1)7

720NJ

where n = max6
i=1 ni. Here we also use the tensor approximation grid (each dimension

has (n+ 1) Chebyshev nodes) for fitting the degree-n complete Chebyshev polynomials

with the formula (2).

max {n1, ..., n6} n1 n2 n3 n4 n5 n6 J N relative speedup
4 4 4 4 4 4 4 210 15,625 1

4 2 2 2 2 2 35 1,215 77
6 6 6 6 6 6 6 924 117,649 1

6 6 6 4 4 2 267 25,725 16
6 6 4 4 4 2 204 18,375 29
6 4 4 4 4 2 165 13,125 50
6 4 4 4 2 2 116 7,875 119
6 4 4 2 2 2 81 4,725 284
6 4 2 2 2 2 57 2,835 673
6 2 2 2 2 2 42 1,701 1,522

8 8 8 8 8 8 8 3,003 531,441 1
8 6 6 4 4 2 310 33,075 156

10 10 10 10 10 10 10 8,008 1,771,561 1
10 6 6 4 4 2 352 40,425 997

Table 1: Numbers of terms/nodes for simplicial complete Chebyshev approximations.
Here, n1, ..., n6 are degrees in six dimensions, J is the number of approximation term,
and N is the number of approximation nodes.

The row with bold numbers in Table 1 gives the degrees we use for our numerical

examples (we use a decreasing order for convenience because of the symmetry, while the
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order used in our examples is (6, 6, 4, 2, 6, 4)), and the number of approximation terms is

only J = 267. But the number of terms of a degree-6 complete Chebyshev polynomial in

the six-dimensional space is 924 (the row with degrees (6,6,6,6,6,6)), about 3.5 times the

number of the simplicial complete Chebyshev approximation we use. Moreover, we will

only need to solveN = 25, 752 optimization problems (1) for each discrete state and stage,

but if we use the same Chebyshev regression algorithm for computing coefficients of the

complete degree-6 Chebyshev polynomials, it needs to solve 76 = 117, 649 optimization

problems (1), about 4.6 times the number for the simplicial polynomial. Thus, the relative

speedup of the simplicial polynomial is 3.5 × 4.6 ≈ 16. That is, the numerical dynamic

programming method using the simplicial complete Chebyshev approximation is roughly

16 times faster than the one using the complete degree-6 Chebyshev polynomials.

Table 1 tells us that for any given number of dimensions, if only a few dimensions

need a high-order degree expansion, the number of approximation terms is not big and

the relative speedup is large. For example, in the row with the degrees (10,6,6,4,4,2)

(we have n1 = 10 while the other dimensions are the same with the row with bold

numbers), the number of approximation terms just increases to 352, but a degree-10

complete polynomial needs 8,008 terms (the last row), about 23 times higher. The slow

growth of the number of approximation terms can also be seen from the other rows.

Moreover, its relative speedup is up to 997.

Furthermore, the benefit from simplicial approximation is greater for higher-dimensional

functions. For example, if we want to approximate a ten-dimensional function, and only

one dimension needs a degree-10 approximation while the other nine dimensions will be

well approximated with quadratic polynomials, then the number of terms of this sim-

plicial approximation is only 110. But the number of terms for the degree-10 complete

approximation is up to 184,756. Moreover, if we use the tensor grid for quick compu-

tation of coefficients with the formula (2), then the number of approximation nodes for

this simplicial approximation is 11× 39 = 216, 513, but the number of tensor grid for the

degree-10 complete approximation is up to 1110 = 2.6× 1010. Thus, the relative speedup

of the simplicial approximation is up to 2× 108.
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4 Error Control Methods

Numerical DP algorithms are often criticized by lacking accuracy estimation and error

control. We use three steps to estimate the errors of solutions from our numerical DP

methods. The first step is testing if the computational method can replicate the solution

of the corresponding deterministic model, the second step estimates stepwise approxima-

tion errors of policy/value functions in the backward value function iteration, and the

last step checks errors in the forward simulation.

4.1 Replication of the Deterministic Solution

The deterministic model can be solved directly by an optimization solver as a large-scale

optimal control problem. When we solve the deterministic problem with our numerical

DP methods, we use the same approximation domains and methods, which are used for

the stochastic problems, on purpose. Thus, if our numerical DP methods can replicate

the solution of the deterministic model, then it tells us that our code is reliable. Moreover,

for a stochastic problem, we can also let its volatility be very small so we know that its

solution should be close to the deterministic one, and then we apply our methods to solve

it for checking if it also works well.

4.2 Error Control in Value Function Iteration

While the above routines show that our methods work well for deterministic or nearly-

deterministic problems, we also estimate the approximation errors of policy/value func-

tions at every value function iteration step for the real stochastic cases. At time t, for

every vector in the discrete state space, we approximate the policies as functions of the

smooth states using the solutions for the optimal policy at the approximation nodes in

Algorithm 1 as data. That is, we construct a vector of policy function approximations,

ât(x), from the optimal solutions a∗(xi) at nodes xi ∈ Xt.

For each time t, the approximation error over the state space is obtained in the

following way: for each discrete state, we draw 1,000 random points in the continuous

state space, solve the maximization step for each point x̃ in the sample set Xt and get the

optimal action vector a∗t (x̃), and then compare it with the values of the approximated
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policy functions at the point, ât(x̃).

After we compute the approximation errors for all points (the number is 1,000 times

the number of discrete state vectors), we compute the global approximation error for

each policy function or the value function in some norm. The following formula gives

the L∞ global error for the i-th policy function ai,t(x) (the i-the element of the policy

function vector at(x))

max
x̃∈Xt

∣∣∣âi,t(x̃)− a∗i,t(x̃)
∣∣∣

1 +
∣∣∣a∗i,t(x̃)

∣∣∣ (3)

Here we use an adjusted relative error measure as some solutions could be 0. We can

use the relative error measure directly if we know that the policy function is not close to

0. The corresponding L1 global error is the average value of the objective of the above

discrete maximization problem over x̃ ∈ Xt.

Similarly, we compute the approximation errors for the value functions. In dynamic

economics problems, an affine transformation of utility functions for all times will not

change the optimal policy functions if the linear coefficient is positive. This implies that

value functions could be arbitrarily large or small in magnitude after such an affine trans-

formation. Thus an absolute or relative error measure for value function approximation

is not enough to tell the approximation efficiency. To overcome the problem, we could

use the following unit-free error measure:

max
x̃∈Xt

∣∣∣V̂t(x̃)− V ∗t (x̃)
∣∣∣

|x̃| · |∇V ∗t (x̃)|
(4)

where ∇V ∗t (x̃) is the gradient vector of V ∗t over x̃, and |x̃| · |∇V ∗t (x̃)| is the inner product

of |x̃| and |∇V ∗t (x̃)|.2 However, in many economics problems, we will have a positive

capital stock, K, as one state variable, and it makes more sense to give an error measure

relative to capital. That is, (4) can be replaced by

max
x̃∈Xt

∣∣∣V̂t(x̃)− V ∗t (x̃)
∣∣∣

K ·
∣∣ ∂
∂KV

∗
t (x̃)

∣∣ (5)

where the capital K is one variable in the vector x̃. In this paper, we use (5) for our
2When x̃ is near or at the origin point, this error measure will not work well, but in our examples

and most economics problems, x̃ will not be close to the origin point.
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error measure of value function approximation.

5 Uncertainty Quantification and Response Surface Func-

tion

In many applications, some parameter values are uncertain. Economists often use sen-

sitivity analysis to address it. While each case is a DP problem, it will be very time

consuming if we want to run extensive sensitivity analysis. Moreover, even after the so-

lutions for a set of m values of uncertain parameters are provided for sensitivity analysis,

sometimes policy makers want to know solutions at one specific parameter value which is

not included in the set of m cases. We introduce the following response surface function

method to give them a quick answer.

In the space of uncertain parameters, we choose a set of m approximation points

which could be tensor grid if the number of uncertain parameters is small, solve their

corresponding DP problems (these DP problems are independent each other, so they

are naturally parallelizable), and then use their solutions (e.g., the initial optimal social

cost of carbon in our climate policy examples) to construct an approximation to fit

them. In this paper, we use a sparse Smolyak grid and Chebyshev-Smolyak polynomials

(see e.g., Smolyak 1963, Malin et al. 2011, and Judd et al. 2014), whileother efficient

approximation methods like adaptive sparse grid methods (Brumm and Scheidegger 2014;

Brumm et al. 2015) can also be implemented.

Solving solutions for each approximation point in the space of uncertain parameters

is independent each other, so it is naturally parallelizable. Similarly with Subsection 4.2,

we can estimate an approximation error for the response surface function. That is, we

randomly draw m′ points in the space of uncertain parameters, solve their corresponding

DP problem in parallel, and then use their solutions to estimate the approximation errors.

For example, if p is the vector of uncertain parameters, R(p) is the fitted response surface

function, {pi : 1 ≤ i ≤ m′} is the set of randomly drawn points, and {yi : 1 ≤ i ≤ m′} is

the set of solutions from solving the corresponding DP problem of pi, then we can use

the following formula to get an L∞ relative error of the approximation of the response
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surface function:

max
i=1,...,m′

|R(pi)− yi|
|yi|

. (6)

Similarly, we can get an L1 relative error by averaging the objective values of (6) for

i = 1, ...,m′.

6 Application - The Climate-Economy model: DSICE

In the following we apply the methodology presented in the previous sections to an envi-

ronmental economics problem which entails much uncertainty. We address the problem of

optimally pricing carbon emissions under intrinsic and parametric uncertainty. Typically

analyses of climate policies are conducted with the help of high-dimensional integrated

assessment models. Most large-scale integrated assessment models have a complex rep-

resentation of the climate system but consider economic activity as exogenous; examples

are MAGICC (Wigley and Raper 1997), ICAM (Dowlatabati and Morgan 1993), FUND

(Anthoff et al. 2009) and IMAGE (Batjes and Goldewijk 1994). These models neglect

any endogenous economic forward-looking decision-making process, making them unable

to model economic responses to future climate policies or to beliefs about the future

evolution of the world. A few models are based on dynamic optimization formulations

of decisions by economic agents; examples include DICE (Nordhaus 2008), MERGE

(Manne and Richels 2005), and RICE (Nordhaus and Yang 1996). Nevertheless, current

integrated assessment models are deterministic, assuming the decision maker knows ex-

actly how the economy and the climate will evolve over the next centuries. Therefore,

they are not capable of representing the uncertainty surrounding future climate and the

economy. A few exceptions include Brock et al. (2013), Jensen and Traeger (2014), and

Cai et al. (2015a).

DICE-2007 (Nordhaus 2008) is the most widely used integrated assessment model.

It solves for a social optimum in the presence of tradeoffs between CO2 abatement,

consumption, and investment. In DICE-2007, the time interval of one period is 10 years.

Cai et al. (2012a, 2012b) extend DICE-2007 to DICE-CJL, a continuous-time model,

and solve it using various finite difference methods allowing any length for the “time

period”, and then find that a 10-year time step is far too large so that it produces results
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significantly different than ones with short time steps, while annual time steps have

acceptable accuracy.

In order to account for uncertainties, Cai et al. (2015a) develop DSICE, a stochastic

integrated assessment model. DSICE builds on the annual DICE-CJL model, incorpo-

rating stochasticity.

6.1 Stochastic Production

We assume that gross world product is described by the Cobb–Douglas production func-

tion

ft(Kt, Lt, Ãt) = ÃtK
α
t L

1−α
t ,

where Ãt is factor productivity at time t, Kt is capital (measured in trillions of 2005 U.S.

dollars), Lt is labor supply, and α is capital share. Productivity has two components:

a deterministic trend At, and a stochastic factor ζt, implying that Ãt ≡ ζtAt. The

deterministic trend is taken from DICE-2007 as

At = A0 exp
(
Λ(1− e−0.001t)/0.001

)
, (7)

where Λ is the initial growth rate of productivity.

The stochastic productivity process is determined by two state variables: ζt and χt.

If they were continuous, we would assume they follow the process

log (ζt+1) = λ log (ζt) + χt + %ωζ,t (8)

χt+1 = rχt + ςωχ,t (9)

where ωζ,t, ωχ,t ∼ i.i.d.N (0, 1), and λ, %, r, and ς are parameters. This is motivated by

Bansal and Yaron (2004) where λ is typically set to equal one. The process in (8) and (9)

is unbounded at all times, a property which makes numerical solutions very difficult. We

make two adjustments. First, we discretize ζt and χt with time-dependent finite-state

Markov chain (see Appendix C), with Markov transition processes denoted by ζt+1 =

gζ(ζt, χt, ωζ,t) and χt+1 = gχ(χt, ωχ,t), and driven by two serially independent stochastic
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processes, ωζ,t and ωχ,t. Second, we allow λ to be a free parameter in calibration.3

Appendix C describes our calibration of the (λ, %, r, ς) parameter vector. Our calibrated

value of λ = 0.998 is close to 1, implying mean reversion and a significantly narrower

domain for ζt. The result is tractable representation of stochastic productivity that is

still consistent with empirical evidence.

6.2 Epstein–Zin Preferences

We use Epstein–Zin preferences (Epstein and Zin 1989) to address the willingness of

people to pay to avoid risk, because Epstein–Zin preferences are flexible specifications of

decision-makers’ preferences regarding uncertainty, and allow us to distinguish between

risk preference and the desire for consumption smoothing. Let Ct be the stochastic

consumption process, and let

u(Ct, Lt) =
(Ct/Lt)

1−1/ψ

1− 1/ψ
Lt

where ψ is the inter-temporal elasticity of substitution. The social welfare under the

Epstein–Zin preferences is defined recursively by

Ut =

{
(1− β)u(Ct, Lt) + β

[
Et
{
U1−γ
t+1

}] 1−1/ψ
1−γ

} 1
1−1/ψ

, (10)

where Et{·} is the expectation conditional on the states at time t, β is the discount

factor, and γ is the risk aversion parameter. Epstein–Zin preferences are special cases of

Kreps–Porteus preferences (Kreps and Porteus 1978). For the special case where ψγ = 1,

we have the separable utility case used in Nordhaus (2008). In this paper, we choose

ψ = 1.5 and γ = 10 from Bansal and Yaron (2004).4

6.3 DSICE

The CO2 concentrations for the carbon cycle are modeled by a three-layer model, with

Mt = (MAT,t,MUO,t,MLO,t)
>,

3This is an extension of the long-run risk model in Cai et al. (2015a), where λ is set as one.
4A detailed discussion of an sensitivity analysis about the impact of ψ and γ on the optimal climate

policy is given in Cai et al. (2015a).
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representing carbon concentration (billions of metric tons) in the atmosphere (MAT,t),

upper oceans (MUO,t) and lower oceans (MLO,t). The CO2 concentrations impact the

surface temperature of the globe through the radiative forcing (watts per square meter):

Ft (MAT) = η log2 (MAT/MAT,0) + FEX,t, (11)

where η = 3.8, and FEX,t is the exogenous radiative forcing.

The global mean temperature (measured in degrees Celsius) is represented by a two-

layer model,

Tt = (TAT,t, TOC,t)
>,

of the atmosphere (TAT,t) and oceans (TOC,t).

The annual total carbon emissions (billions of metric tons) during year t is stochastic

and dependent on the economic shock:

Et (K,µ, ζ) = σt(1− µ)ft(K,Lt, ζ) + ELand,t, (12)

where ELand,t is the rate of emissions from biological processes, and σt is the technology

factor. Therefore, the carbon cycle and temperature transition system becomes

Mt+1 = ΦMMt + (Et (Kt, µt, ζt) , 0, 0)> ,

Tt+1 = ΦTTt + (ξ1Ft (MAT,t) , 0)> ,

where ΦM is the carbon cycle transition matrix, and ΦT is the climate temperature

transfer matrix with the following form

ΦT =

 1− ξ1η/ξ2 − ξ1ξ3 ξ1ξ3

ξ4 1− ξ4

 ,
where ξ2 is the climate sensitivity parameter, and the values of ξ1, ξ3, and ξ4 are given

in Appendix A.

The output is affected by the global average surface temperature, TAT . Climate

factors reduce output by 1 − Ω (TAT), where Ω (TAT) is a decreasing function on TAT.
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Abatement effort with an emission control rate µ will reduce total net CO2 emissions at

some cost as a share of output. The abatement cost is proportional to µθ2 , while the

adjusted cost for backstop is given by θ1,t. Thus, the net output is

Yt(K,TAT, µ, ζ) =
(

1− θ1,tµθ2
(

1 + θ3e
θ4(µ−1)

))
Ω (TAT) ft(K,Lt, ζ), (13)

where θ3 = 0.1 and θ4 = 100 are used because much higher marginal mitigation costs

will be required when µ is close to 1. Therefore, the next-stage capital is

Kt+1 = (1− δ)Kt + Yt (Kt, TAT,t, µt, ζt)− Ct,

where δ is the annual rate of depreciation of capital.

The social planner’s problem is represented as a dynamic programming problem. It

has eight states including six continuous state variables (the capital stock K, the three-

dimensional carbon system M, and the two-dimensional temperature vector T) and two

discrete state variables (the stochastic productivity state ζ, and the persistence of its

growth rate, χ). Let x ≡ (K,M,T, ζ, χ) denote the eight-dimensional state variable

vector and let x+ denote its next period’s state vector.

Let ρ be the utility discount rate. The terminal value function given in Appendix D

is an approximation of sum of discounted deterministic utility over the infinite horizon.

We use 300 years as the horizon for our dynamic stochastic optimization problem, as

we find a larger horizon has almost no impact on the solution in the first century. We

make a nonlinear change of variables5 and express the Bellman equation in terms of utils,

5That is, Vt (x) = [Ut (x)]
1− 1

ψ /(1− β).
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(Ut)
1− 1

ψ . That is, the Bellman equation is

Vt (x) = max
C,µ

u(Ct, Lt) + β
[
Et
{(
Vt+1

(
x+
))Γ}] 1

Γ
,

s.t. K+ = (1− δ)K + Yt(K,TAT, µ, ζ)− Ct,

M+ = ΦMM + (Et (K,µ, ζ) , 0, 0)> ,

T+ = ΦTT + (ξ1Ft (MAT) , 0)> ,

ζ+ = gζ(ζ, χ, ωζ),

χ+ = gχ(χ, ωχ), (14)

for t = 0, 1, . . . , 299, where β = e−ρ is the discount factor and

Γ =
1− γ
1− 1

ψ

is the composite factor for preference. In the model, consumption C and emission control

rate µ are two control variables. The definitions of parameters and exogenous paths, Lt,

θ1,t, FEX,t, ELand,t, and σt, are given in Appendix A.

7 Parameters for Uncertainty Quantification

Many important model parameters are uncertain. Here we choose four parameters for

the uncertainty quantification analysis. Those parameters are: climate sensitivity, utility

discount rate, growth rate of productivity and a damage factor adjustment parameter.

Climate Sensitivity The climate sensitivity parameter ξ2 refers to the long-run change

in atmospheric temperature (in degrees Celsius) that would result from a doubling of the

atmospheric stock of carbon. The mostly used climate sensitivity value in the integrated

assessment models is ξ2 = 3. For the uncertainty quantification analysis we study a range

of climate sensitivity between 1.5 and 4.5, thus following the most recent assessment of

the IPCC, expressing high confidence that 1.5 - 4.5 is a likely range (IPCC 2013). We

use the central point ξ2 = 3 as our benchmark level.
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Damage Factor Probably the most uncertain component of any assessment of climate

change are the impacts resulting from it. As an example, consider a global warming of

4 degrees Celsius (that is TAT = 4). While studies built on the DICE model (Nordhaus

2008; Nordhaus and Sztorc 2013) assume that in this case the impacts on the economy

will be about 4% of gross world product, other studies assume much higher impacts, in

the order of 9% (Dietz and Stern 2015; Millner et al. 2014; Weitzman 2012) and even

up to 50% (Dietz and Stern 2015) of gross world product. Here, we want to cover that

large spectrum of parameter uncertainty regarding the impacts of climate change. We

therefore utilize the large range of possible damage factors from the literature and specify

our damage impact as a convex combination of those.

The low damage factor in the DICE-2013R model (Nordhaus and Sztorc 2013) is

quadratic in the level of atmospheric temperature. We denote by Ω the lower envelope

damage factor which is defined as

Ω(TAT) =
1

1 + 0.00267(TAT)2
,

Similarly, we use the (high) damage factor from (Dietz and Stern 2015) and denote the

upper envelope damage factor by

Ω(TAT) =
1

1 + 0.00284(TAT)2 + 0.0000819(TAT)6.754
.

Then, our damage factor function is defined as

Ω(TAT) = (1− q)Ω(TAT) + qΩ(TAT)

where q ∈ [0, 1] is an uncertain parameter. We use the central point q = 0.5 as our

benchmark level. Considering the previous example of global warming of 4 degrees Celsius

(that is TAT = 4) and using q = 0.5, our benchmark specification suggest a damage factor

of 25%. Setting q = 0, we obtain 4%, with q = 0.1 we obtain 9%, and with q = 1 we

obtain 50%. In Figure 1 we illustrate the range of damage factors considered in this

study and compare it some more recent studies in the literature.
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Figure 1: Damage Functions

Utility Discount Rate The utility discount rate ρ, also known as the pure rate of time

preference, is an important parameter in the cost-benefit assessment of climate change

as it denotes how much the welfare of future generations is valued. Moral arguments are

made to justify low pure-time discounting (Dasgupta 2008; Stern 2007 ). Recent studies

(Arrow et al. 2014; Barro 2009; Gollier 2012; Goulder and Williams 2012; Lontzek et al.

2015; Pindyck and Wang 2013) suggest that uncertainty about future damages should

imply a low discount rate. However, most integrated assessment studies use higher pure-

time discounting. The value for the utility discount rate in DICE is 0.015 (that it 1.5%

per year), which is the upper limit of values used in IWG (2010). For the uncertainty

quantification analysis we study a range of ρ between 0.001 and 0.015. We use the central

point ρ = 0.008 as our benchmark level.

Growth Rate of Productivity In the DICE model (Nordhaus 2008), the initial time

growth rate of productivity (the deterministic trend), Λ, is estimated to be 0.0092 and its

standard deviation is 0.004. We choose [0.0072, 0.0112] as the range for the uncertainty

quantification analysis. We use the central point Λ = 0.0092 as our benchmark level.
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8 Results for Benchmark Example

In this section we apply numerical DP algorithms to solve DSICE with the benchmark

parameter values: ξ2 = 3, q = 0.5, ρ = 0.008, and Λ = 0.0092. We define this as our

benchmark example. The numbers of nodes for discrete states ζ and χ are 33 and 19

respectively, so in additional to the 6 continuous states this model version has 33× 19 =

627 discrete states.

For each discrete state, we choose a simplicial complete Chebyshev polynomial (see

Appendix B) to approximate its value function. Moreover, we compute the values of the

value function on the multidimensional tensor grids in the continuous state approxima-

tion domains, and then compute the Chebyshev coefficients. Since the approximation

domain of K is very wide except the first periods, we use log(K) as the state variable

for approximation. For all examples in this paper, the degrees of six continuous states

(log(K),M,T) for the simplicial complete Chebyshev polynomials are (6, 6, 4, 2, 6, 4),

and the numbers of nodes for continuous states are (7, 7, 5, 3, 7, 5), so the number of co-

efficients per discrete state is 267 and the number of approximation nodes per discrete

state is 25,725.6

In the maximization step of DP, we use NPSOL (Gill et al. 1994), a set of Fortran

subroutines for minimizing a smooth function subject to linear and nonlinear constraints.

In order to improve the efficiency of the optimization solver, we also use consumption-

output ratio (i.e., Ct/ft(Kt, Lt, ζt)) as the control variable for consumption Ct, so NPSOL

can use the “warm start” option more efficiently, because the consumption-output ratio

will not change significantly over different states while Ct could. We use annual time

steps over a 300-year horizon, choose a terminal value function, and use value function

iteration to solve for the value function at each time t. The major computational effort is

in solving the Bellman optimization problem at each approximation node at each discrete

state and each time; the total number of optimization problems for 300 value function

iterations is 300× 627× 25725 ≈ 4.8× 1010.

We solve the benchmark example with the master-worker parallel DP algorithm (Cai

et al. 2015d) over 628 cores of Blue Waters, a modern supercomputer, and get the
6We choose the degrees so that our solutions have two-digit accuracy (a higher degree approximation

can get a higher accuracy, but it will also be more time-consuming).
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solutions in 1.7 wall clock hours. The total number of floating-point operations per

second (FLOPS) is 5.1 × 1011 while the theoretical peak performance of these compute

cores is 6.3 × 1012 FLOPS,7 so the parallel efficiency of our algorithm is more than 8%

for this example. This paper uses modest-sized problems to illustrate the basic ideas.

Cai et al. (2015a) apply these methods to larger problems, even some using 69,170 cores

on the Blue Waters supercomputer with even greater efficiency.

Moreover, our methods have displayed nearly linear speedup in scaling tests using up

to tens of thousands of cores on the Blue Waters supercomputer (Hansen et al. 2014).

That is, if the problem size stays fixed, the work units per unit time are almost linear to

the number of cores. This linear scaling parallel performance comes from our algorithms’

efficiency with low demands for memory and communication.

Because of the efficiency of the algorithm and the computational power on Blue

Waters, we are also able to do uncertainty quantification. In the next section we will

solve hundreds of examples in parallel for uncertainty quantification, that is infeasible on

a desktop.

After computing these Chebyshev coefficients on all discrete state values for all stages

along the 300 years using the backward value function iteration method, we use a sim-

ulation method to generate the optimal paths by the forward iteration method. That

is, when the state at the current stage is given, since the next stage value function ap-

proximation has been computed by the previous numerical DP algorithm, we can apply

the optimization solver to get the optimal policy and the next-stage continuous state

(K,M,T). Then we simulate to get the next stage stochastic state. We start this pro-

cess with the given initial continuous state and (ζ0, χ0) = (1, 0), and run it until the

terminal time. In the following examples, we will compute 10,000 paths in parallel by

the simulation method, and then plot their distribution.

8.1 Numerical results

Figure 2 shows the distribution of simulation paths of surface temperature, atmospheric

carbon, and capital, and their approximation domains over the first 200 years. The

domains for surface temperature and atmospheric carbon looks too wide, but they are
7A typical single-core 2.5 GHz processor has a theoretical performance of 1010 FLOPS.
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necessary for approximating value functions over the stochastic productivity state with

very small probabilities, as we do not want to use unstable extrapolation.

Figure 2: Simulation paths of states and their approximation domains for the benchmark
example. The solid black lines are the average along time t, the solid red lines are the
solutions of DICE-CJL with ψ = 1/γ = 0.5 (the utility preference used by DICE-2007),
and the dashed red lines are the solutions of DICE-CJL with ψ = 1/γ = 1.5. The dotted
red lines are the lower/upper bounds of the approximation domains in the corresponding
state dimension at each time. The other lines are the quantiles of the 10,000 optimal
paths.

Figure 3 shows the numerical results of DSICE using the distribution of simulation

paths of SCC and output over the first 100 years. The initial SCC is 189 US dollars per

ton, which is much larger than the DICE-CJL solution with ψ = 0.5 but slightly smaller

than the DICE-CJL solution with ψ = 1.5. The most interesting observation is that the
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future social cost of carbon and gross world output are both stochastic processes with

variances expanding over time.

Figure 3: Social Cost of Carbon and Gross World Output of the benchmark example .
The line styles are consistent with Figure 2.

8.2 Error Control

Error control is very important for any numerical algorithms. Numerical results should

not be trusted if we have not examined their accuracy.

8.2.1 Test for the Deterministic Example

Our first step is to test if our numerical DP algorithm can replicate the true solution of

the degenerated deterministic DSICE example, using the same parameters and algorithm

details (including the approximation domains) as the stochastic problem except we kill

variances . Here the DICE-CJL model helps us. It will be a natural way to compare the

solutions given by the numerical DP algorithm and the solutions given by the GAMS

(McCarl et al. 2014) code using a large-scale nonlinear optimizer (e.g., CONOPT (Drud

1996) and SNOPT (Gill et al. 2005)) for DICE-CJL in Cai et al. (2012b), because

DICE-CJL is the deterministic degenerated case of DSICE.

Our Fortran code of the numerical DP algorithm (the deterministic version with six

continuous state variables and a degenerated economic shock) is applied to solve the

deterministic DSICE example. Our target is not only to replicate the solution from
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DICE-CJL, but also to obtain some accuracy measure for the corresponding stochastic

problem using the same algorithm. Thus, we use the approximation domains and meth-

ods that are the same ones used in solving the stochastic problems on purpose, although

the deterministic example can be solved with much narrower domains and then higher

accuracy. Note that it will be more efficient to run this accuracy test before we solve the

stochastic problem, because it is much faster to solve the deterministic problem (we can

get the approximation domains of the stochastic problem at first) and then we can test

out the best choice of approximation methods and their specification such as degrees of

simplicial complete Chebyshev polynomials.

After computing the Chebyshev coefficients for all stages using the backward value

function iteration method, we generate the optimal path with the given initial state by

the forward iteration method. That is, given the current stage’s state, since we have

the approximation of the next-stage value function, we can use the Bellman equation to

compute the optimal consumption and emission control so that we can get the optimal

next-stage state, and then go on until the terminal stage.

Now we use the solution of DICE-CJL from the GAMS code in Cai et al. (2012b) to

verify the accuracy of the optimal path computed from the numerical DP algorithm. It

is run on a desktop computer with 3.5 GHz 6-Core Intel Xeon E5 and the running time

is less than two minutes.

Figure 4 plots the relative errors of the optimal paths of states, (Kt,MAT,t, TAT,t), and

control variables, (Ct, µt), over the whole horizon. The relative errors of the other states,

(MUO,t,MLO,t, TLO,t), are even smaller so they are omitted. The errors are computed in

the following formula: ∣∣∣∣∣X∗t,DP −X∗t,GAMS

X∗t,GAMS

∣∣∣∣∣ ,
where X∗t,DP is the optimal path at year t from our numerical DP algorithm, and X∗t,GAMS

is the optimal solution at year t of the GAMS code for the DICE-CJL model. We see

that the relative errors are small, particularly those at the first half of this century are

around or less than 0.1%.

To verify the accuracy of our method, we also use Figure 5 to show the relative

approximation errors in L1 norm (the left panel) and L∞ norm (the right panel) of two

30



Figure 4: Relative errors for the deterministic example. The red and blue solid lines in
the figure are respectively the errors of two policy functions—emission control rates and
consumptions.

policy functions (consumption and emission control rate) and value function at each year

for the deterministic case over the first 100 years. The errors are computed with the

accuracy checking method introduced in Section 4.2. We see that all the stepwise errors

are small, particularly for the value function approximation or the policy functions in the

first 30 years. The L1 errors for emission control rates start to increase quickly after 30

years and then look “big”. However, these “big” L1 errors are caused by the polynomial

approximation to a function with kinks, where the emission control rate is near to or hits

its upper limit. We can also see this from comparing with the corresponding L∞ errors

for emission control rates, where they do not increase as quickly as the L1 errors.
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Figure 5: Stepwise errors of numerical DP for the deterministic example

8.2.2 Stepwise errors for the stochastic benchmark example

Figure 6 shows the relative approximation errors in L1 norm (the left panel) and L∞

norm (the right panel) of two policy functions and value function at each year for the

benchmark case over the first 100 years. By comparing Figure 6 and Figure 5, we see

that the stochastic example has about one-order magnitude higher L1 errors than the

deterministic example using the same approximation domains and methods.8 Thus, we

estimate that errors of the policy functions of the stochastic example are about one-order

magnitude higher than the ones of the deterministic example. That is, since Figure 4 tells

us that the errors of the policy functions are about 0.1% for the deterministic example,

we estimate that the errors of the policy functions of the stochastic example are about

1%, an acceptable criterion in economics.
8Although the L∞ errors of the stochastic example are about three-order magnitude higher than the

L∞ errors of the deterministic example in the first few decades, they are in the those extreme states that
have almost zero probabilities to be reached.
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Figure 6: Stepwise errors of numerical DP for the benchmark example

8.2.3 Sensitivity to Terminal Value Functions

The solutions of value function iteration relies on the choice of the terminal value function.

Appendix D gives our choice for the terminal value function V300. We find that when

we have 10% relative change in the whole terminal value function, it has 0.3% relative

change on the initial SCC. In fact, the impact of terminal value function mainly relies on

the horizon and discount rate. If we let the discount rate be ρ = 0.015, then the relative

impact on the initial SCC is 0.07% , but if ρ = 0.001 then it increases to 2%. When we

change the horizon from 300 years to 600 years, then its impact on the initial SCC is

almost zero.

9 Results: Uncertainty Quantification & Surface Response

Function

We are limited by the current state of knowledge about the critical parameters about

the economics and climate system. Also, different decision-makers usually have different

beliefs about the implications of parameter vectors which are represented by the four-

dimensional (ξ2, ρ, q,Λ) here (we assume that the other two preference parameters, ψ

and γ, are given for simplicity). This is partially solved by Table 2 including the results

of 16 cases. Since we are only interested in the initial-year SCC here, we use 19 nodes

33



for ζt instead of 33 nodes in the benchmark case to save computational resource, as we

find that they give almost the same initial-year SCC.

ξ2 q
SCC

ρ = 0.001 ρ = 0.015
Λ = 0.0072 Λ = 0.0112 Λ = 0.0072 Λ = 0.0112

1.5 0 113 172 21 24
1 129 191 24 30

4.5 0 604 827 101 120
1 832 1141 253 281

Table 2: Social cost of carbon in various cases for sensitivity analysis

From Table 2, we know that SCC is sensitive to the values of the four uncertain

parameters and has a wide range—from $21 to $1,141. Due to this wide range, we want

to do a more complete examination of parameter sensitivity.

For a specific point in the space of the four uncertain parameters, if it is not quite

close to one of points used in the sensitivity analysis, then its optimal carbon tax cannot

be estimated well by simply using a multi-linear interpolation over the values in the table.

For example, if we use the multi-linear interpolation to estimate the carbon tax for the

benchmark case, then its estimation is $304, about 60% higher than its true value, $189.

Since the discretization on the parameter space with 16 cases is too coarse, a more

accurate map from the parameter space to the policy space is desired. If we compute

SCC over a tensor grid to get a good multi-linear interpolation, it will be too time-

consuming as each case takes around 1.3 wall clock hours using 362 cores if we run the

master-work parallel method to solve it. Thus, we construct a response surface function

for uncertainty quantification over the four uncertain parameters using sparse Smolyak

grid.

In this paper, we compute initial SCC at the level-3 Smolyak sparse grid (Smolyak

1963 and Malin et al. 2011) over the four-dimensional space (ξ2, q, log(ρ),Λ) of four pa-

rameters: ξ2 ∈ [1.5, 4.5], q ∈ [0, 1], log(ρ) ∈ [log(0.001), log(0.015)] and Λ ∈ [0.0072, 0.0112].

We then used a degree-8 Chebyshev-Smolyak polynomial (Smolyak 1963 and Malin et

al. 2011) to fit the log of SCC over (ξ2, q, log(ρ),Λ), giving us an approximation to the

dependence of initial SCC to parameters over the four-dimensional hypercube. That is,
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our response surface function has the following form:

SCC = exp (P (ξ2, q, log(ρ),Λ))

where P is the fitted degree-8 Chebyshev-Smolyak polynomial using the solution over the

Smolyak sparse grid which has 137 different points. We solve these 137 cases in parallel

on the supercomputer—Blue Waters.

We also do a verification test for the response surface function. For example, the

approximated value from the response surface function over the benchmark case is $184,

about 2.7% errors with the true value. We have a global measurement for the ap-

proximation error. At first we randomly draw 100 points in the parameter space of

(ξ2, q, log(ρ),Λ), and solve the optimal SCC for each point (these 100 jobs are naturally

parallelized). We then compare them with the approximated SCC on these out-of-sample

points from the response surface function. We find that the L∞ relative error using the

formula (6) is 3.8% and the corresponding L1 relative error is 0.76%. Therefore, our

degree-8 polynomial is good for the purposes of the discussion below.

Figure 7 displays the contours of the response surface functions with labelled SCC

ranging from $40 to $550. We see that the bottom-right contour (q = 1 and Λ = 0.0112)

has the largest SCC relative to other contours, and the largest SCC is more than $550

for the cases with ξ2 > 4 and ρ < 0.004, and the marginal SCC over ξ2 or ρ is also large:

the exact range of the bottom-right contour is from $30 at its left-top corner point with

ξ2 = 1.5 and ρ = 0.015, to $1,141 at its right-bottom corner point with ξ2 = 4.5 and

ρ = 0.001, which are also listed in Table 2. The top-left contour (q = 0 and Λ = 0.0072)

has the smallest SCC relative to other contours; but the marginal SCC over ξ2 or ρ is

still large: its exact range is from $21 to $604 listed in Table 2 . From the figure, we see

clearly that SCC increases as climate sensitivity ξ2, damage factor q, or growth trend

parameter Λ increases, or utility discount rate ρ decreases.
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Figure 7: Contours of Response Surface Function. Here we show contours for q ∈
{0, 0.5, 1} and Λ ∈ {0.0072, 0.0092, 0.0112}, each contour graph representing one combi-
nation of (q,Λ). For example, the bottom-right contour represents the case with q = 1
and Λ = 0.0112. The horizontal axis of each contour is the climate sensitivity ξ2. The
vertical axis of each contour is the utility discount rate ρ in percentage. In each contour
of Figure 7, the labelled numbers on the lines represent their SCC on the points of (ξ2, ρ).

10 Conclusion and Extensions

With the efficient parallel algorithms, we have done an extensive exploration of the

parameter space in DSICE to determine the sensitivity of conclusions for parameters

about which we have limited information. The accuracy tests indicate that the algorithms
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are reliable as well as fast. Our results have shown decisively that climate change issues

can be examined with the same complexity used in standard dynamic stochastic models

in economics.

While we developed the DSICE framework incorporating both economic and climate

risks in Cai et al. (2015a), we also implemented our methods discussed in this paper to

DSICE for solving optimal climate policies with both economic and climate risks under

various parameter uncertainties of utility preferences and climate risk specifications in

Cai et al. (2015a). Moreover, DSICE has been applied in the literature. For example,

Lontzek et al. (2015) use our methods and DSICE to examine the impact on the car-

bon tax under various continuous climate tipping points. Moreover, Cai et al. (2015b)

apply our methods and DSICE to do a cost-benefit assessment of climate policies under

environmental tipping points impacting on market and non-market goods and services.

Moreover, our DP methods can be applied to basically any dynamic programming

problem. Most of macroeconomics looks at models where none of the primitives depend

on calendar time. We can also solve non-stationary problems such as ones with unit roots

(e.g., Cai et al. 2015a).
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Appendix A—Definition of Trends and Parameters

DSICE (Cai et al. 2015b) has the following exogenous paths: Lt (population), σt (carbon

intensity of output.), θ1,t (mitigation cost parameter), ELand,t (annual carbon emissions

from biological processes), and FEX,t (exogenous radiative forcing). We give their defini-

tions here for readers’ convenience:

Lt = 6514e−0.035t + 8600(1− e−0.035t) (15)

σt = σ0 exp
(
−0.0073(1− e−0.003t)/0.003

)
(16)

θ1,t =
1.17σt

(
1 + e−0.005t

)
2θ2

(17)

ELand,t = 1.1e−0.01t (18)

FEX,t =


−0.06 + 0.0036t, if t ≤ 100

0.3, otherwise

(19)

We also list the values of other parameters and/or definition of all parameters, vari-

ables, and symbols, in Tables 3–5.

t ∈ {0, 1, ..., 300} time in years (t represents year t+ 2005)
ψ = 1.5 inter-temporal elasticity of substitution
γ = 10 risk aversion parameter
Γ the composite factor for preference
ρ ∈ [0.001, 0.015] utility discount rate (default: 0.008)
β = e−ρ utility discount factor
At productivity trend at time t, A0 = 0.0272

Lt population at time t
Kt capital at time t (in $ trillions), K0 = 137

Ct consumption at time t
α = 0.3 capital share in output
Λ ∈ [0.0072, 0.0112] initial growth rate of the productivity trend (default: 0.0092)
δ = 0.1 annual depreciation rate
Yt gross world output at time t
SCCt social cost of carbon in dollars per ton

Table 3: Parameters, variables, and symbols for the economic system of our model
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χt persistence of productivity shock at time t,
χ0 = 0

ζt stochastic productivity shock at time t, ζ0 = 1
(λ, %, r, ς) = (0.998, 0.035, 0.65, 0.007) productivity process parameters
Ãt = ζtAt stochastic productivity at time t
ωζ,t i.i.d. shocks in transition of ζt
ωχ,t i.i.d. shocks in transition of χt

Table 4: Parameters, variables, and symbols for the stochastic growth specification

Carbon
Cycle

MAT,t carbon concentration (billion tons) in
atmosphere at time t, MAT,0 = 808.9

MUO,t carbon concentration in upper ocean
(billion tons) at time t, MUO,0 = 1255

MLO,t carbon concentration in lower ocean
(billions tons) at time t, MLO,0 = 18365

Mt = (MAT,t,MUO,t,MLO,t)
> carbon concentration vector at time t

ΦM =

 0.981 0.01 0
0.019 0.9846 0.00034

0 0.0054 0.99966

 transition matrix of carbon cycle

M∗AT = 596.4 preindustrial atmospheric carbon
concentration

ELand,t carbon emissions (billions tons) from land
use in year t

Temperature
System

TAT,t global average surface temperature
(degrees Celsius) at time t, TAT,0 = 0.7307

TOC,t global average ocean temperature (degrees
Celsius) at time t, TOC,0 = 0.0068

Tt = (TAT,t, TOC,t)
> temperature vector at time t

ΦT transition matrix of temperature system
(ξ1, ξ3, ξ4) = (0.037, 0.277, 0.0048) temperature transition parameters
ξ2 ∈ [1.5, 4.5] climate sensitivity (default: 3)
Ft radiative forcing at time t
FEX,t exogenous radiative forcing in year t
η = 3.8 radiative forcing parameter

Interaction S = (K,M,T, ζ, χ) state vector
between the µt emission control rate at time t
economic q ∈ [0, 1] damage factor parameter (default: 0.5)
system and (θ2, θ3, θ4) = (2.8, 0.1, 100) mitigation cost parameters
the climate σt technology factor at time t, σ0 = 0.13418

system θ1,t adjusted cost for backstop at time t

Table 5: Parameters, variables, and symbols in the carbon and temperature systems and their
interaction with the economic system
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Appendix B—Approximation

An approximation scheme approximates the value function with V̂ (x; b) =
∑n

j=0 bjφj(x)

for some vector of parameters b. A spectral method uses globally nonzero basis func-

tions φj(x). Examples of spectral methods include ordinary or Chebyshev polynomial

approximation. In contrast, a finite element method uses local basis functions where

for each j the basis function φj(x) is zero except on a small part of the approximation

domain. Examples of finite element methods include piecewise linear interpolation, cubic

splines, and B-splines. This paper uses spectral methods; specifically, we use Chebyshev

polynomials after transforming the domain via a nonlinear change of variables. See Cai

(2010), Cai and Judd (2014, 2015), and Judd (1998) for more details.

Chebyshev Polynomial Approximation

Chebyshev polynomials on [−1, 1] are defined as φj(z) = cos(j cos−1(z)). The Chebyshev

polynomials on a general interval [xmin, xmax] are defined as φj((2x−xmin−xmax)/(xmax−

xmin)) for j ≥ 0, and are orthogonal under the weighted inner product 〈f, g〉 =
´ xmax

xmin
f(x)g(x)w(x)dx

with the weighting function

w(x) =

(
1−

(
2x− xmin − xmax

xmax − xmin

)2
)−1/2

.

A degree n Chebyshev polynomial approximation for V (x) on [xmin, xmax] is

V̂ (x; b) =
n∑
j=0

bjφj

(
2x− xmin − xmax

xmax − xmin

)
, (20)

where bj are the Chebyshev coefficients.

The canonical Chebyshev nodes on [−1, 1] are zi = − cos ((2i− 1)π/(2m)) for i =

1, . . . ,m, and the corresponding Chebyshev nodes adapted for the general interval [xmin, xmax]

are xi = (zi+1)(xmax−xmin)/2+xmin. If we have Lagrange data {(xi, vi) : i = 1, . . . ,m}

with vi = V (xi), then the coefficients bj in (20) are

bj =
2

m

m∑
i=1

viφj(zi), j = 1, . . . , n, (21)
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and b0 =
∑m

i=1 vi/m. The method is called the Chebyshev regression algorithm in Judd

(1998).

Multidimensional Complete Chebyshev Approximation

In a d-dimensional approximation problem, the domain of the approximation function

will be

{x = (x1, . . . , xd) : xmin,i ≤ xi ≤ xmax,i, i = 1, . . . d} ,

Let xmin = (xmin,1, . . . , xmin,d) and xmax = (xmax,1, . . . , xmax,d). We let [xmin,xmax]

denote the domain. Let α = (α1, . . . , αd) be a vector of nonnegative integers. Let φα(z)

denote the product
∏d
i=1 φαi(zi) for z = (z1, . . . , zd) ∈ [−1, 1]d. Let

Z(x) =

(
2x1 − xmin,1 − xmax,1

xmax,1 − xmin,1
, . . . ,

2xd − xmin,d − xmax,d

xmax,d − xmin,d

)
for any x = (x1, . . . , xd) ∈ [xmin,xmax]. With this notation, the degree-n complete

Chebyshev approximation for V (x) is

V̂ (x; b) =
∑

α≥0, |α|≤n

bαφα (Z(x)) ,

where |α| =
∑d

i=1 αi. This is a degree n polynomial, and has
(
n+d
d

)
terms.

Appendix C—Calibration of the Productivity Process

The productivity process, (ζt, χt), is a time-dependent, finite-state Markov chain and

depends on four parameters: λ, %, r, and ς. Our calibration target is to choose these

parameters to match the conditional and unconditional moments of consumption growth

rates from observed annual market data over the period from 1930 to 2008. For each

choice of (λ, %, r, ς) and several choices for the number of states, nζ and nχ, we solved

our model assuming damage from climate is zero (that presumably was the case for the

years included in the date). The preference parameters are ψ = 1.5 and γ = 10. After

computing the solution for each specific parameter guess, we computed 10,000 simulations
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of the consumption process and computed the conditional and unconditional moments

of the per capita consumption growth paths over the first century

The Markov chain approximates the following continuous processes9

log
(
ζ̂t+1

)
= λ log

(
ζ̂t

)
+ χ̂t + %ω̂ζ,t, (22)

χ̂t+1 = rχ̂t + ςω̂χ,t, (23)

where ω̂ζ,t, ω̂χ,t ∼ i.i.d.N (0, 1). The random variable χ̂t is normal with mean 0. Denote

Υt ≡ Var {χ̂t}. Equation (23) implies the recursion Υt+1 = r2Υt + ς2 and then

Υt =
ς2
(
1− r2t

)
1− r2

(24)

for t > 0. The random variable log
(
ζ̂t

)
is also normal with mean 0, and can be expressed

in terms of its disturbances and χ̂t:

log
(
ζ̂t

)
=

t−1∑
s=1

λt−1−sχ̂s + %
t−1∑
s=0

λt−1−sω̂ζ,s.

Denote ∆t ≡ Var
{

log
(
ζ̂t

)}
. Since E {χ̂tχ̂s} = r|t−s|Υmin{t,s}, we find that

∆t = E
{(

log
(
ζ̂t

))2}
=

(
t−1∑
s=1

λ2(t−1−s)Υs + 2
t−1∑
τ=2

τ−1∑
s=1

λ2(t−1)−τ−srτ−sΥs

)
+
%2
(
1− λ2t

)
1− λ2

,

(25)

for t > 0.

Our Markov chain for the bivariate process (ζt, χt) will be chosen to match the vari-

ances Υt in (24) and ∆t in (25) . Our Markov chain will have bounded support, implying

that we lose the tails. But the presence of the tails creates serious challenges in even

proving existence of a solution to our dynamic programming problem. We choose the

values of χt as {χt,j : j = 1, ..., nχ} where χt,j are equally spaced in
[
−3
√

Υt, 3
√

Υt

]
(the

probability that the continuously distributed random variable χ̂t is in
[
−3
√

Υt, 3
√

Υt

]
is

9To avoid confusion, we use ζ̂t and χ̂t to represent the continuous random variables at each time t,
while ζt and χt represent the Markov chains.
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99.7 percent), at each time t. Similarly, we choose the values of ζt as {ζt,i : i = 1, ..., nζ}

so that log (ζt,i) are equally spaced in
[
−3
√

∆t, 3
√

∆t

]
(the probability that the contin-

uously distributed random variable log
(
ζ̂t

)
is in

[
−3
√

∆t, 3
√

∆t

]
is 99.7 percent).

Next we set the transition probability matrices for our Markov chains (ζt, χt). For

the paired values {(ζt,i, χt,j) : i = 1, ..., nζ , j = 1, ..., nχ} (ζ0,i ≡ 1 and χ0,j ≡ 0), we apply

the method in Tauchen (1986) to define the transition probability from χt,j to χt+1,j′ :

Pr
{
χt+1,j′ | χt,j

}
= Φ

(
1

ς

(
χt+1,j′ + χt+1,j′+1

2
− rχt,j

))
−Φ

(
1

ς

(
χt+1,j′−1 + χt+1,j′

2
− rχt,j

))
,

for j′ = 2, ..., nχ − 1, and

Pr {χt+1,1 | χt,j} = Φ

(
1

ς

(
χt+1,1 + χt+1,2

2
− rχt,j

))
,

Pr {χt+1,n | χt,j} = 1− Φ

(
1

ς

(
χt+1,n−1 + χt+1,n

2
− rχt,j

))
,

where Φ (·) is the cumulative normal distribution function, for any j = 1, ..., nχ. Similarly,

the transition probability from (ζt,i, χt,j) to ζt+1,i′ is defined as

Pr
{
ζt+1,i′ | (ζt,i, χt,j)

}
= Φ

(
1

%

(
log
(
ζt+1,i′

)
+ log

(
ζt+1,i′+1

)
2

− (λ log (ζt,i) + χt,j)

))

−Φ

(
1

%

(
log
(
ζt+1,i′

)
+ log

(
ζt+1,i′+1

)
2

− (λ log (ζt,i) + χt,j)

))
,

for i′ = 2, ..., nζ − 1, and

Pr {ζt+1,1 | (ζt,i, χt,j)} = Φ

(
1

%

(
log (ζt+1,1) + log (ζt+1,2)

2
− (λ log (ζt,i) + χt,j)

))
,

Pr {ζt+1,n | (ζt,i, χt,j)} = 1−Φ

(
1

%

(
log (ζt+1,n−1) + log (ζt+1,n)

2
− (λ log (ζt,i) + χt,j)

))
,

for any i = 1, ..., nζ , j = 1, ..., nχ.
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We aim to match conditional variances as well as unconditional variances. This

demands a relatively fine discretization of the
(
ζ̂t, χ̂t

)
space at each time. After some

experimentation, we find that nζ = 33 and nχ = 19 produce a good approximation (i.e.,

distributions of solutions of our benchmark example in the first 100 years are almost

invariant to a larger nζ or nχ) with the calibrated values at λ = 0.998, % = 0.034,

r = 0.65, and ς = 0.007. Moreover, with nζ = 33 and nχ = 19, it does not exist a

transition probability that is nearly equal to one so that no transition is almost certain

at any time.

Appendix D—Terminal Value Function

Value function iteration needs to specify a value function at the terminal time. We

initially assume that the solutions from 2010 to 2100 is insensitive to the terminal value

function, but then check that assumption. We assume that at the terminal time, the

state vector is (K̃, M̃, T̃). For any time t after the terminal time, we assume that the

population is Lt = 8600, the total production factor and the adjusted cost for backstop

will be the same with the numbers at the terminal time respectively, i.e., At = 0.295

and θ1,t = 0.008. We assume that at the terminal time, the world reaches a partial

equilibrium: after the terminal time, consumption is always 0.74 times of net ouput Y,

and the emission control rate will always be 1 so that the emission of carbon from the

industry will always be 0, i.e., µt = 1, for any year t ≥ 300. Moreover, the economic

shock disappears, i.e., ζt = 1. Thus, the dynamics of the climate system become

Mt+1 = ΦMMt + (ELand,t, 0, 0)>,

Tt+1 = ΦTTt + (ξ1Ft, 0)>,

for any year t ≥ 300, where M300 = M̃, T300 = T̃, and

Ft(MAT) = η log2 (MAT/MAT,0) + 0.3.
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The transition law for capital becomes

Kt+1 = (1− δ)Kt + 0.26Yt(Kt, TAT,t, 1, 1)

for any year t ≥ 300, where K300 = K̃.

Therefore, we have our terminal value function:

V300(K̃, M̃, T̃, ζ, χ) =
∞∑

t=300

e−ρ(t−300)u(Ct, Lt).

The terminal value function is the sum of discounted utilities over 400 years from t = 300

to t = 700 with annual time steps. It is a good approximation of the summation of the

infinite sequence.

It would be too time-consuming to use the terminal value function of the above

formula in optimizers to compute optimal solutions, so we use its approximation to save

computational time. In our examples, we use a simplicial complete Chebyshev polynomial

approximation, V̂300(K,M,T, ζ, χ), over the terminal domain of the six-dimensional state

space (K,M,T).
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