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A Two reference models with labor market frictions

This Appendix provides more details on the two models laid out in the main text.

A.1 Model with search and matching frictions

A.1.1 Household

Households are modeled as in Andolfatto (1996) and Merz (1995). At any point in time nt agents

of the household are employed (w) and 1 − nt agents are unemployed (u). As in Walsh (2005)

and Christiano, Eichenbaum, and Trabandt (2016), we assume that each household member has the

same concave preferences over consumption and that the household provides perfect consumption

insurance. The household maximizes the inter-temporal utility of the members

E0

∞∑
t=0

βt

[
(ct − µct−1)

1−σ

1− σ
− ntϕ0

(ht)
1+ϕ

1 + ϕ

]
(A.1)

subject to the budget constraint

ct +
Bt+1

Pt

⩽ [wthtnt + bu(1− nt)] +
Prt
Pt

+
Tt

Pt

+
Rt−1Bt

Pt

. (A.2)

E0 is the expectations operator conditional on all the information available up to period 0. β is

the time discount factor. Consumption is denoted by ct, and the hours worked by the nt employed

household members are measured by ht. Unemployed household members do not experience disutility

from working. The real wage is given by wt and unemployment benefits are measured by bu. Bond

holdings Bt, taxes and transfers Tt, and profits Prt are measured in nominal terms and are converted

into real units through division by the price level Pt. Rt is the nominal interest rate on bonds. We

denote by λt the Lagrange multiplier attached to the budget constraint when solving the household’s

problem. As in Walsh (2005) we assume that total consumption ct consists of a manufactured good

cmt and home production bu(1−nt), i.e., ct = cmt +bu(1−nt). This assumption guarantees that it is in

principle possible under the conditions in Hosios (1990) for the outcomes of the search and matching

process to be efficient.1

1 If unemployment benefits are modeled as tax-financed, imposing the conditions in Hosios (1990) is not sufficient
to achieve efficiency for bu > 0. The exact way of modeling unemployment benefits is of little consequence for us as
for empirical reasons we are not interested in parameterizations that satisfy the conditions in Hosios (1990). However,
the modeling choice matters in our companion paper Bodenstein and Zhao (2016) from which we draw in this paper.
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A.1.2 Employment and the labor market

The labor market is characterized by search and matching frictions. In this economy, the presence of

search and matching frictions impedes people who are seeking jobs from finding one and wholesale

firms that are posting vacancies from filling them. At the beginning of each period, a share ρ of

matches that existed in the last period nt−1 breaks up. The share (1− ρ) of matches survives.

With the labor force normalised to unity, the total number of job seekers in period t is the sum of

unemployed workers in period t− 1 and the newly fired workers. Let ut denote the total number of

job seekers,

ut = 1− nt−1 + ρnt−1 = 1− (1− ρ)nt−1 (A.3)

The unemployment rate differs from ut as some job seekers may be matched and become employed.

We define the unemployment rate as

ũt = 1− nt. (A.4)

Firms post vacancies vt to be filled with job-seeking workers. Unemployed workers are matched

to vacant jobs according to the constant returns to scale matching function

mt = χuζ
t v

1−ζ
t . (A.5)

χ determines the degree of matching efficiency, ζ captures the curvature of Beveridge curve, indicating

the substitutability between vacancies and job seekers. Newly formed matches mt result immediately

in employment. The latter evolves according to

nt = (1− ρ)nt−1 +mt. (A.6)

Finally, we define the job finding rate st as the probability of an unemployed worker being matched

to a vacant job

st =
mt

ut

= χθ1−ζ
t . (A.7)
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The vacancy filling rate qt is the probability for a vacancy being filled

qt =
mt

vt
= χθ−ζ

t . (A.8)

Labor market tightness θt is defined as

θt =
vt
ut

. (A.9)

We are now in a position to define the marginal value of employment to the householdHt consistent

with the household’s optimization problem

Ht =
Wt

Pt

ht − bu − ϕ0

1 + ϕ
h1+ϕ
t

1

λt

+ (1− ρ)Etβ
λt+1

λt

(1− st+1)Ht+1. (A.10)

Moving one household member into employment affects the household in three ways. First, total

household resources rise by the difference between wages and unemployment benefits. Second, the

utility of the agent changing employment status falls by the disutility from labor (divided by the

marginal utility of wealth λt to express it in monetary terms). Finally, the gains from matching a

household member with a firm also occur in future periods.

A.1.3 Wholesale firms

Wholesale firms employ labor as the only factor of production. Their output is sold at the competitive

market price Pw
t . Firms post vacancies at the flow vacancy posting cost κv. A wholesale firm’s

optimization problem is

max
{ywt ,vt,nt}∞t=0

E0

∞∑
t=0

βtλt

(
Pw
t

Pt

ywt − Wt

Pt

ntht − κvvt

)
s.t. nt = (1− ρ)nt−1 + qtvt

ywt = atntht. (A.11)

The technology shock at follows an exogenous AR(1) process

log (at) = ρa log (at−1) + εat (A.12)
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with εat given by N(0, σ2
a).

Let Jt denote the marginal value of employment to the wholesale firm (the lagrange multiplier

associated with the first constraint). The first order condition with respect to vacancy postings

implies

qtJt = κv. (A.13)

Using the envelop theorem Jt itself is defined as

Jt =

(
Pw
t

Pt

atht −
Wt

Pt

ht

)
+ (1− ρ)Etβ

λt+1

λt

Jt+1. (A.14)

Employing one additional worker raises the firm’s profits in the current period by the increment

between marginal product of labor and wage payment. Furthermore, if the match survives into the

future the firm also enjoys a continuation value.

Combining equations, the wholesale firm’s vacancy posting condition equation (A.14) can be

rewritten as

mctatht =
Wt

Pt

ht +
κv

qt
− (1− ρ)Etβ

λt+1

λt

κv

qt+1

. (A.15)

The wholesale firms’ real revenue
Pw
t

Pt

is in effect the intermediate firms’ real marginal cost mct. The

left hand side of equation (A.15) indicates the marginal benefit of hiring an additional worker. The

right hand side of equation (A.15) captures the marginal cost of hiring a new worker, involving wage

payments for hours worked, vacancy posting costs associated with a new match, and the present

value of saved future vacancy posting costs if the match survives in following periods.

Notice that the search and matching frictions work through the presence of vacancy posting

costs. Absent vacancy posting costs, wholesale firms would post infinitely many vacancies. All the

unemployed workers seeking jobs will find one. In this case, the model with search and matching

frictions reduces to the standard New Keynesian model and marginal costs would be given by mct =
wt

at
.
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A.1.4 Wage bargaining

The real wage wt and hours worked are determined by Nash bargaining between the worker and the

firm after forming a match. The total surplus of the match is given by

Jt +Ht. (A.16)

Under Nash bargaining the solution to the bargaining game is obtained from

max
wt,ht

J1−ξ
t Hξ

t (A.17)

subject to equations (A.10) and (A.14). ξ stands for the bargaining power of the household, and

1− ξ indicates the bargaining power of the firm.

The sharing rule for this Nash bargaining mechanism as derived from the first order condition

with respect to wt implies

ξJt = (1− ξ)Ht. (A.18)

Combining equations (A.10), (A.14) and (A.18) yields an expression for the bargained wage

wtht = ξ

(
htmctat + (1− ρ)Et

[
β
λt+1

λt

st+1Jt+1

])
+ (1− ξ)

(
bu +

ϕ0

1 + ϕ
h1+ϕ
t

1

λt

)
. (A.19)

Combining equation (A.15) and equation (A.19), we obtain the equilibrium condition for vacancy

posting

κv

qt
= (1− ξ)

(
htmctat − bu − ϕ0

1 + ϕ
h1+ϕ
t

1

λt

)
+ (1− ρ)Etβ

λt+1

λt

(1− ξst+1)
κv

qt+1

. (A.20)

The first order condition associated with hours worked in the Nash bargaining problem can be

written as

mctat =
ϕ0ht

ϕ

λt

. (A.21)

6



A.1.5 Retailers

Retail goods producers purchase wholesale goods to produce differentiated intermediate good vari-

eties. The retailers have monopoly power over their variety. The retailer’s cost minimization problem

is then given by

min
ywt (i),yt(i)

Pw
t y

w
t (i)

s.t. yt(i) = ywt (i) (A.22)

with the first order condition for ywt (i) being

Pw
t − λw

t = 0 (A.23)

where λw
t is the Lagrange multiplier for the production function and thus represents the marginal

cost. Therefore, real marginal costs satisfy

Pw
t

Pt

= mct. (A.24)

The prices of intermediate goods are determined by staggered contracts as in Calvo (1983). Each

period, a firm faces a constant probability 1 − ξp to re-optimize its price Pt(i). The probability is

independent across firms and across time. For those firms that do not re-optimize their price, prices

will be updated as a weighted average of Πt =
Pt

Pt−1
, the nominal price inflation in the last period,

and Π̄, the steady state inflation rate. The relative importance of Πt and Π̄ is governed by price

indexation parameter ιp.2 More specifically,

Pt+1(i) = P̃t(i)
(
πt

ιpπ̄1−ιp
)
. (A.25)

Price setting behavior of intermediate good firm i is derived from

max
P̃t(i)

Et

∞∑
s=0

(ξpβ)s
λt+s

λt

[(
(1 + τ̄ p)P̃t(i)

(
s∏

l=1

Πιp

t+l−1Π̄
1−ιp

)
−MCt+s

)]
yt+s(i)

2 This price updating scheme avoids price dispersions in steady state if the steady state inflation rate is not zero.
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s.t. yt+s(i) =

 P̃t(i)

(
s∏

l=1

Πιp

t+l−1Π̄
1−ιp
)

Pt+s


−

λp

λp − 1

yt+s. (A.26)

τ̄ p is the subsidy to intermediate firms. We assume τ̄ p = λp − 1 to remove the distortions arising

from monopolistic competition between the retailers. We introduce markup shocks in the first order

conditions for intermediate firms. We define θp = λp − 1.

A.1.6 Final good producer

Differentiated intermediate products are combined to form the composite goods by a continuum of

representative bundlers in a perfectly competitive environment based on the CES aggregator

yt =

[∫ 1

0

yt(i)
1
λp di

]λp

(A.27)

where λp

λp−1
refers to the elasticity of substitution between intermediate varieties. Profit maximisation

of a bundler is defined as

max
yt(i),yt

Ptyt −
∫ 1

0

Pt(i)yt(i)di

s.t. yt =

[∫ 1

0

yt(i)
1
λp di

]λp

. (A.28)

The first order conditions can be recombined to obtain the demand function for intermediate good i

yt(i) =

(
Pt(i)

Pt

)− λp

λp−1

yt (A.29)

and the aggregate price index

Pt =

[∫ 1

0

Pt(i)
− 1

λp−1di

]−(λp−1)

. (A.30)

A.2 Model with Calvo sticky wage

We only describe the parts of the model that are different from the search and matching model. More

details are provided in Erceg, Henderson, and Levin (2000).
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A.2.1 Household

Each Household maximizes preferences

E0

∞∑
t=0

βt−t0

[
(ct(j)− µct−1(j))

1−σ

1− σ
− ϕ0

1 + ϕ
ht(j)

1+ϕ

]
(A.31)

subject to the budget constraint

Ptct(j) +Bt+1(j) = (1 + τ̄w)Wt(j)ht(j) +Rt−1Bt(j) + Prt(j) + Tt(j). (A.32)

E0 is the expectations operator conditional on all the information available up to period 0. β is the

time discount factor. The variable ct(j) stands for household consumption. µ indicates the degree

of internal consumption habits. Pt is the price of consumption goods, and Rt denotes the gross

return for the one period risk free bond Bt(j). The Household earns income by supplying labor

Wt(j)ht(j), receives payments from last period bond holding Rt−1Bt(j), and Prt(j) which consists of

an aliquot share of profits distributed. Finally, the household receives the government transfer Tt(j).

ϕ represents the inverse Frisch labor supply elasticity. Labor income Wt(j)ht(j) is subsidized at a fix

rate τ̄w.

A.2.2 Labor bundler

Labor bundlers package differentiated labor services supplied by each individual into an aggregate la-

bor service with a CES technology resold to the intermediate good producers in perfectly competitive

markets. The labor bundling technology is specified as

ht =

[∫ 1

0

ht(j)
1

λw dj

]λw

(A.33)

where λw

λw−1
refers to the elasticity of substitution between differentiated labor types. We define

θw = λw − 1. Labor bundlers maximize profits in a perfectly competitive environment. Profit

maximization for labor bundlers implies

max
ht(j),ht

Wtht −
∫ 1

0

Wt(j)ht(j)dj

s.t. ht =

[∫ 1

0

ht(j)
1

λw dj

]λw

.

9



The first order conditions imply that the demand for differentiated labor services satisfies

ht(j) =

[
Wt(j)

Wt

]− λw

λw−1

ht (A.34)

with the aggregate (nominal) wage being defined as

Wt =

[∫ 1

0

Wt(j)
− 1

λw−1dj

]−(λw−1)

. (A.35)

A.2.3 Wage setting

Households supply their differentiated labor services to the labor bundlers. There is a continuum

of households, index by j ∈ (0, 1). The imperfect substitutability of differentiated labor gives each

individual household market power in setting the nominal wage. Each monopolistic household chooses

labor supply ht(j) and the wage Wt(j). In addition, wage setting is subject to nominal rigidities as

in Calvo (1983). As in Erceg, Henderson, and Levin (2000), households can readjust nominal wages

with probability 1 − ξw in each period. For those that cannot adjust wages, wages will increase by

the weighted average of inflation in the previous period Πt and the steady state inflation rate Π̄

Wt+1(j) = W̃t(j)
(
Πιω

t Π̄1−ιω
)
. (A.36)

For those that can re-optimize, the problem is to choose a wage W̃t(j) that maximizes utility in all

states of nature where the household has to maintain that wage in the future

max
W̃t(j)

Et

∞∑
s=0

(ξwβ)s

[
(ct+s − µct−1+s)

1−σ

1− σ
− ϕ0

1 + ϕ
ht+s(j)

1+ϕ

]
s.t. Pt+sct+s +Bt+s+1 = (1 + τ̄w)Wt+s(j)ht+s(j) +Rt+s−1Bt+s + Prt+s + Tt+s

ht+s(j) =

(
Wt+s(j)

Wt+s

)−
λw

λw − 1
ht+s

Wt+s(j) = W̃t(j)

(
s∏

l=1

Πιw

t+l−1Π̄
1−ιw

)
(A.37)

Where τ̄w is the subsidy to households who supply differentiated labor varieties. We assume τ̄w =

λw − 1 to eliminate the distortions due to monopolistic competition among households.
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B Replacement ratio and the labor market tightness re-

sponse

We derive the elasticity of labor market tightness with respect to shocks and discuss its role in

amplifying the responses of unemployment and vacancies in the presence of search and matching

frictions in light of the criticism of Shimer (2005).

We combine the wage bargaining equations to derive an expression for labor market tightness,

θt. Substituting the surplus sharing rule, Jt =
1−ξ
ξ
Ht into the definition of the household’s marginal

value of employment

ξJt = − (1− ξ)
ϕ0

1 + ϕ
h1+ϕ
t

1

λt

+ (1− ξ) (wtht − bu)

+ξ (1− ρ) βEt

(
λt+1

λt

(1− st+1) Jt+1

)
. (B.1)

Combining with the marginal value of employment to the firm to eliminate the wage rate

Jt + (1− ξ)
ϕ0

1 + ϕ
h1+ϕ
t

1

λt

+ (1− ξ) bu

= (1− ξ)mplthtmct + (1− ρ)Et

[
β
λt+1

λt

(1− ξst+1) Jt+1

]
(B.2)

or recognizing that efficient bargaining over hours worked implies that the marginal product of labor

is equal to the marginal rate of substitution between labor and consumption

Jt + (1− ξ) bu = (1− ξ)
ϕ

1 + ϕ
mplthtmct + (1− ρ)Et

[
β
λt+1

λt

(1− ξst+1) Jt+1

]
. (B.3)

Applying the definitions for st and qt, and the condition

Jt =
κv

qt
(B.4)

we finally summarize the equations characterizing the wage bargaining process in a single equation

κv

χ
θζt + (1− ξ) bu

= (1− ξ)
ϕ

1 + ϕ
mplthtmct + (1− ρ)Et

[
β
λt+1

λt

(
1− ξχθ1−ζ

t+1

)(κv

χ
θζt+1

)]
(B.5)
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thereby eliminating Ht, Jt, wt from the system of relevant equations.

In its log-linear form, the expression reduces to

ζ
κv

χ
θζssθ̂t − (1− ρ)β

(
ζκv

χ
θζss − ξκvθss

)
Etθ̂t+1

= (1− ξ)
ϕ

1 + ϕ
mplsshssmcssm̂plt + (1− ξ)

ϕ

1 + ϕ
mplsshssmcssĥt

+(1− ξ)
ϕ

1 + ϕ
mplsshssmcssm̂ct

+(1− ρ)β
(
1− ξχθ1−ζ

ss

)(κv

χ
θζss

)
Et

[
λ̂t+1 − λ̂t

]
(B.6)

and after using the steady state relationship qss = χθ−ζ
ss to

ζ
κv

qss
θ̂t − (1− ρ)β

(
ζκv

qss
− ξκvθss

)
Etθ̂t+1

= (1− ξ)
ϕ

1 + ϕ
mplsshssmcss

(
m̂plt + ĥt + m̂ct

)
+(1− ρ)β (1− ξqssθss)

(
κv

qss

)
Et

[
λ̂t+1 − λ̂t

]
. (B.7)

To simplify the expression in equation (B.7), note that in the steady state equation (B.5) implies

(
κv

qss

)
[1− (1− ρ)β (1− ξqssθss)] = (1− ξ)

[
ϕ

1 + ϕ
mplsshssmcss − bu

]
. (B.8)

Using the conditions involving the marginal value of employment to the firm Jt evaluated in the

steady state and defining the replacement ratio as bu = ruwsshss, we show that

bu = ruwsshss = ru
(
mplsshssmcss − (1− (1− ρ)β)

κv

qss

)
. (B.9)

Combining equations (B.8) and (B.9) implicitly defines the bargaining weight ξ in terms of the

replacement ratio ru and other parameters and steady state targets as

(
κv

qss

)
[1− (1− ρ)β (1− ξqssθss)]

= (1− ξ)

[(
ϕ

1 + ϕ
− ru

)
mplsshssmcss + ru (1− (1− ρ)β)

(
κv

qss

)]
. (B.10)

Assuming that changes in variables are small between two periods, we can approximate the response
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of labor market tightness as

θ̂t ≈ 1

Υ

ϕ
1+ϕ

mplsshssmcss[(
ϕ

1+ϕ
− ru

)
mplsshssmcss + ru (1− (1− ρ)β)

(
κv

qss

)] (m̂plt + ĥt + m̂ct

)
(B.11)

where

Υ = ζ +
(1− ρ)βξqssθss (1− ζ)

[1− (1− ρ)β (1− ξqssθss)]
. (B.12)

Υ lies in the interval [ζ, 1], where ζ is often set around 0.5 (in our case 0.54).

In the main text, we report an estimate for the replacement ratio ru in the search and match-

ing model. At a value of 0.5345 our point estimate is well below the implausibly high estimate in

Christiano, Eichenbaum, and Trabandt (2016) for the search and matching model with Nash bar-

gaining. The subsequent discussion explains how this difference across models related to our decision

of modeling the disutility from labor explicitly.

The responses of unemployment and vacancies are important dimensions to judge the performance

of the search and matching model. The unemployment rate (and thus the number of job seekers ut)

drops significantly after rising initially and vacancies vt increase strongly over the medium term.

Both in the data and the model the directions and the magnitudes of these responses imply a strong

response of labor market tightness (the ratio of unfilled vacancies to job seekers).

As shown in equation (B.11), labor market tightness θ̂t (expressed in log deviation from steady

state) is approximately proportional to (the log-deviations from steady state of) the marginal product

of labor, hours worked, and real marginal costs in our model. Abstracting from the disutility of

working for employed workers (i.e., ϕ → ∞ ), Shimer (2005) argues that standard search and matching

models cannot reproduce the strong response of labor market tightness relative to the movements

in the marginal product of labor found in the empirical evidence for plausible parameter choices,

in particular for the replacement ratio ru. According to Shimer, a strongly pro-cyclical real wage

dampens the responses of vacancies and unemployment resulting in a much muted response of labor

market tightness vis-a-vis the data.3

3 For our parameterization, the steady state values of the marginal product of labor mplss and marginal costs mcss
are 1, and hours worked hss are 1/3, implying hssmplssmcss = 1/3. With the term (1− (1− ρ)β) κv

qss
assuming the

value 0.0024, the elasticity of labor market tightness can be raised to its value in the data by choosing ru sufficiently
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Numerous authors have offered approaches to resolve this issue: Hall (2005) and Shimer (2005)

propose real wage rigidities; Hagedorn and Manovskii (2008) argue in favor of high opportunity

costs of employment; Hall and Milgrom (2008) suggest departures from Nash bargaining over wages;

Petrosky-Nadeau and Wasmer (2013) analyze the role of financial frictions. Our framework avoids

the criticism in Shimer (2005) by modeling the disutility from working explicitly building on the ideas

in Hagedorn and Manovskii (2008). With a labor supply elasticity of 0.5, i.e., ϕ = 2, the value for ru

required to match the empirical evidence on unemployment, vacancies, and labor market tightness

drops from almost 1 to near 0.5.

C Model with search and matching frictions: linear model

The linear system of the model with search and matching frictions can be stated in terms of three

equations. For simplicity, we abstract from price and wage indexation and consumption habits.

C.1 Implications of negotiating over hours worked

In the model with search and matching frictions and flexible hours worked, equation (A.21), the

first order condition associated with hours worked in the Nash bargaining problem, resembles its

counterpart in the standard New Keynesian model with flexible wages. Noticing that

ct = yt − κvvt + bu(1− nt) (C.1)

Ωp
tyt = atntht (C.2)

where Ωp
t measures the dispersion of prices, negotiation over hours worked implies in equation (A.21)

implies

ϕ0

(
Ωp

tyt
nt

)ϕ

(yt − κvvt + bu(1− nt))
σ =

Pw
t

Pt

a1+ϕ
t . (C.3)

close to 1. In a setting similar to ours, Christiano, Eichenbaum, and Trabandt (2016) estimate ru to be 0.88.
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In the model with a Walrasian labor market (as in the standard New Keynesian model), nt is constant

and search costs are zero

ϕ0 (Ω
p
tyt)

ϕ (yt)
σ =

Pw
t

Pt

a1+ϕ
t . (C.4)

Relative to the standard New Keynesian model, we need to take into account the dynamics of nt, vt,

and qt. Or after log-linearizing, the two different models imply

(ϕ+ σ) ŷt =

[̂
Pw

P

]
t

+ (1 + ϕ) ât (C.5)

compared to

ϕ+ σ

yss
yss + bu(1− nss)

1− κvvss
yss+bu(1−nss)

 ŷt −Θt =

[̂
Pw

P

]
t

+ (1 + ϕ) ât (C.6)

with the correction term Θt being defined as

Θt =

ϕ+ σ

bunss

yss + bu(1− nss)

1− κvvss
yss+bu(1−nss)

 n̂t + σ

κvvss
yss+bu(1−nss)

1− κvvss
yss+bu(1−nss)

v̂t. (C.7)

The variables v̂t and q̂t can be expressed in terms of n̂t using the (log-linearized) equations that

describe the labor market

v̂t = θ̂t + ût (C.8)

q̂t = −ζθ̂t (C.9)

ût = − (1− ρ)nss

1− (1− ρ)nss

n̂t−1 (C.10)

n̂t = (1− ρ)n̂t−1 + ρm̂t (C.11)

m̂t = ût + (1− ζ)θ̂t (C.12)

and therefore

v̂t = ν1n̂t − ν2

(
ν1 +

nss

1− nss

)
n̂t−1 (C.13)
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q̂t = −ζν1n̂t + ζν1ν2n̂t−1 (C.14)

θ̂t =
1

ρ(1− ζ)
n̂t −

1

ρ(1− ζ)

(1− ρ)(1− nss)

1− (1− ρ)nss

n̂t−1

= ν1n̂t − ν1ν2n̂t−1. (C.15)

Thus,

Θt =

[
ϕ+ σ

ϖbu

1− κc
+ σ

κc

1− κc
ν1

]
n̂t − σ

κc

1− κc
ν1ν2

(
1 +

nss

1− nss

1

ν1

)
n̂t−1

= θ1n̂t + θ2n̂t−1 (C.16)

where

ν1 =
1

ρ(1− ζ)
(C.17)

ν2 =
(1− ρ)(1− nss)

1− (1− ρ)nss

(C.18)

κc =
κvvss

yss + bu(1− nss)
(C.19)

ϖbu =
bunss

yss + bu(1− nss)
(C.20)

ϖyss =
yss

yss + bu(1− nss)
(C.21)

θ1 =

[
ϕ+ σ

ϖbu

1− κc
+ σ

κc

1− κc
ν1

]
(C.22)

θ2 = −σ
κc

1− κc
ν1ν2

(
1 +

nss

1− nss

1

ν1

)
(C.23)

The dynamics of real marginal costs satisfy

m̂ct =

[̂
Pw

P

]
t

=

(
ϕ+ σ

ϖyss

1− κc

)
ŷt − (1 + ϕ) ât − (θ1n̂t + θ2n̂t−1) . (C.24)

C.2 Implications of negotiating over the real wage

Combining the first order conditions of the firm with the bargaining outcome over wages, we arrive

at the following relationship between real marginal costs of the wholesale retailers and labor market
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tightness (see also the previous Appendix B)

(1− ξ)
ϕ

1 + ϕ

Pw
t

Pt

atht

= (1− ξ) bu +
κv

χ
θζt − (1− ρ)Et

[
β
λt+1

λt

(
1− χθ1−ζ

t+1

)(κv

χ
θζt+1

)]
. (C.25)

Log-linearizing therefore delivers the following relationship between real marginal costs of the retailers

and labor market tightness:

[̂
Pw

P

]
t

+ ŷt − n̂t =
ζ

ν

κv

qss
θ̂t −

(1− ρ)β

ν

(
ζκv

qss
− ξκvθss

)
Etθ̂t+1

+
(1− ρ)β

ν
(1− ξqssθss)

(
κv

qss

)
Et [it − πt+1] (C.26)

where we have used the fact that ŷt − n̂t = ât + ĥt and we defined

ν = (1− ξ)
ϕ

1 + ϕ

[
Pw

P

]
ss

asshss. (C.27)

Absent flexible hours worked, i.e., ĥt = 0, the above expression is used to substitute out for real

marginal costs in the New Keynesian Phillips Curve, see Ravenna and Walsh (2011). Given the

movements in marginal costs and the real interests rate, labor market tightness and therefore em-

ployment are pinned down.

In the case of flexible hours worked, we can combine equations (C.6) and (C.26) to

(1 + θ1)n̂t + θ2n̂t−1 =

(
ϕ+ σ

ϖyss

1− κc
+ 1

)
ŷt − (1 + ϕ) ât

−ζ

ν

κv

qss
θ̂t +

(1− ρ)β

ν

(
ζκv

qss
− ξκvθss

)
Etθ̂t+1

−(1− ρ)β

ν
(1− ξqssθss)

(
κv

qss

)
Et [it − πt+1] . (C.28)

and after substituting out for θ̂t

−(1− ρ)β

ν

(
ζκv

qss
− ξκvθss

)
ν1Etn̂t+1

+

[
(1 + θ1) +

ζ

ν

κv

qss
ν1 +

(1− ρ)β

ν

(
ζκv

qss
− ξκvθss

)
ν1ν2

]
n̂t
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+

[
θ2 −

ζ

ν

κv

qss
ν1ν2

]
n̂t−1

=

(
ϕ+ σ

ϖyss

1− κc
+ 1

)
ŷt − (1 + ϕ) ât

−(1− ρ)β

ν
(1− ξqssθss)

(
κv

qss

)
Et [it − πt+1] . (C.29)

C.3 Aggregate demand equation

By taking into account home production, the resource constraint in the economy is

ct = yt − κvvt + bu(1− nt). (C.30)

Log-linearizing delivers

ĉt =
ϖyss

1− κc
ŷt −

θ1 − ϕ

σ
n̂t +

θ2
σ
n̂t−1 (C.31)

and combining with the log-linearized Euler equation for holding bonds

−σ (ĉt − ĉt+1) = it − Etπt+1 (C.32)

we have the log-linearized aggregate demand equation

ŷt = Etŷt+1 −
1

ϖyss

1− κc

σ
(it − Etπt+1)

− 1

ϖyss

1− κc

σ
[(θ1 − ϕ) (Etn̂t+1 − n̂t) + θ2 (n̂t − n̂t−1)] . (C.33)

C.4 Linear model

The policy rule not withstanding, the linear model with search and matching frictions is summarized

by the following three equations

πt = βEtπt+1 +
(1− βξp)(1− ξp)

ξp

[(
ϕ+ σ

ϖyss

1− κc

)
ŷt

− (1 + ϕ) ât − (θ1n̂t + θ2n̂t−1)
]
+ θ̂p,t (C.34)

ŷt = Etŷt+1 −
1

ϖyss

1− κc

σ
(it − Etπt+1)
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− 1

ϖyss

1− κc

σ
[(θ1 − ϕ) (Etn̂t+1 − n̂t) + θ2 (n̂t − n̂t−1)] (C.35)

γ1Etn̂t+1 + γ2n̂t + γ3n̂t−1 =

(
ϕ+ σ

ϖyss

1− κc
+ 1

)
ŷt − (1 + ϕ) ât

−(1− ρ)β

ν
(1− ξqssθss)

(
κv

qss

)
Et [it − πt+1] (C.36)

with the coefficients

γ1 = −(1− ρ)β

ν

(
ζκv

qss
− ξκvθss

)
ν1 (C.37)

γ2 =

[
(1 + θ1) +

ζ

ν

κv

qss
ν1 +

(1− ρ)β

ν

(
ζκv

qss
− ξκvθss

)
ν1ν2

]
(C.38)

γ3 =

[
θ2 −

ζ

ν

κv

qss
ν1ν2

]
(C.39)

κp =
(1− βξp)(1− ξp)

ξp
. (C.40)

According to the NKPC (C.34), similar to the standard New Keynesian model, price inflation

dynamics in search and matching models are determined by current and future real marginal costs

which in turn depend on the ratio between the real wage and the marginal product of labor. However,

the real wage in search and matching models is determined through a bargaining process rather than

being equal to the marginal rate of substitution between leisure and consumption. Thus, labor

market variables affect inflation dynamics directly through the NKPC. Furthermore, the real interest

rate affects inflation dynamics, the third equation (C.36). Ravenna and Walsh (2011) refers to this

channel, which is absent in the standard New Keynesian model, as the “cost-channel”. In contrast to

the standard New Keynesian model, the aggregate demand equation (C.35) in search and matching

models features not only forward looking behavior but also backward looking behavior even with

standard household preferences that exhibit no habit persistence.

The standard New Keynesian model and the model in Ravenna and Walsh (2011) arise as special

cases:

• Absent labor market frictions, n̂t = 0, κc = 0, ϖyss = 1 and equation (C.36) taken out from

the model, the standard New Keynesian model with flexible wages reemerges

πt = βEtπt+1 +
(1− βξp)(1− ξp)

ξp
(ϕ+ σ)

(
ŷt −

(1 + ϕ)

(ϕ+ σ)
ât

)
(C.41)

ŷt = Etŷt+1 −
1

σ
(it − Etπt+1) . (C.42)
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• With labor market frictions and completely inelastic individual labor supply as in Ravenna and

Walsh (2011), i.e. ϕ = ∞, equation (C.36) reduces to ŷt = ât + n̂t. After substituting out for

ŷt by n̂t in the aggregate demand equation, we obtain

πt = βEtπt+1 +
(1− βξp)(1− ξp)

ξp

[
γ1Etn̂t+1 + (γ2 − θ1) n̂t + (γ3 − θ2) n̂t−1

−ât +
(1− ρ)β

ν
(1− ξqssθss)

(
κv

qss

)
Et (it − πt+1)

]
(C.43)

n̂t = γnEtn̂t+1 + (1− γn) n̂t−1 − γd
n

1

ϖyss

1− κc

σ
(it − Etπt+1) + γd

n (ρa − 1) ât

(C.44)

where

γn =
ϖyssσ − (1− κc) (θ1 − ϕ)

ϖyssσ + (1− κc) (θ2 − θ1 + ϕ)
(C.45)

γd
n =

ϖyssσ

ϖyssσ + (1− κc) (θ2 − θ1 + ϕ)
. (C.46)
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D Optimal targeting rule for the model with search and

matching frictions

Having obtained the (linear) equations that describe the behavior of the private sector, we still need

to derive the objective function of the policymaker as a purely quadratic approximation to the prefer-

ences of the representative household to formulate the linear-quadratic problem from which we derive

the optimal targeting rule in the New Keynesian model with search and matching frictions. In this

section, we first derive the correct quadratic loss function as the approximation to the preferences

of the representative household. Then we obtain the first order conditions associated with the poli-

cymaker’s problem of optimizing the (quadratic) objective function subject to the (linear) equations

that describe the behavior of the private sector. Finally, the optimal targeting rule is then derived

by combining the first order conditions to the policymaker’s problem into a single equation without

Lagrange multipliers.

D.1 Simplified nonlinear optimality conditions

Before retrieving a numerical representation of the quadratic loss function, we write the nonlinear

model in terms of the variables that also enter the set of log-linear equations
{
nt, it, yt,Πt

}
as well

as the variables
{
Up
t , V

p
t ,Ω

p
t , p̃

opt
t

}
.

The number of job seekers is already expressed in terms of employment only

ut = 1− (1− ρ)nt−1 (D.1)

and matches evolve thus according to

mt = nt − (1− ρ)nt−1. (D.2)

Using the matching technology mt = χuζ
t v

1−ζ
t , the total number of vacancies satisfies

vt =

(
mt

χuζ
t

) 1

1− ζ = χ
−

1

1− ζ (nt − (1− ρ)nt−1)

1

1− ζ (1− (1− ρ)nt−1)
−

ζ

1− ζ (D.3)
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while labor market tightness can be shown to follow

θt =
vt
ut

= χ
−

1

1− ζ (nt − (1− ρ)nt−1)

1

1− ζ (1− (1− ρ)nt−1)
−

1

1− ζ . (D.4)

Finally, the vacancy filling rate is given by

qt = χθ−ζ
t = χ

1

1− ζ (nt − (1− ρ)nt−1)
−

ζ

1− ζ (1− (1− ρ)nt−1)

ζ

1− ζ (D.5)

and the job finding rate can be written as

st =
mt

ut

=
nt − (1− ρ)nt−1

1− (1− ρ)nt−1

. (D.6)

Using the production technology, hours worked can be expressed as

ht =
Ωp

tyt
atnt

. (D.7)

The resource constraint implies for consumption that

ct = yt − κvvt + bu(1− nt). (D.8)

The equation governing vacancy postings (A.20) can be stated as

(
κv

qt

)
c−σ
t = (1− ξ)

(
ϕ

1 + ϕ
ϕ0h

1+ϕ
t − buc−σ

t

)
+ (1− ρ)βEtc

−σ
t+1(1− ξst+1)

(
κv

qt+1

)
(D.9)

whereas the wage bargaining equation is

wtht = ξ

(
ϕ0h

1+ϕ
t cσt + (1− ρ)βEt

c−σ
t+1

c−σ
t

θt+1κ
v

)
+ (1− ξ)

(
bu + ϕ0

h1+ϕ
t

1 + ϕ
cσt

)
. (D.10)

Finally, the nonlinear equations governing the evolution of prices in equilibrium are, the optimal

price

p̃optt =
Up
t

V p
t

(D.11)
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which is computed as the ratio of the recursively defined terms Up
t and V p

t

Up
t =

1 + θp,t
θp

ϕ0h
ϕ
t

yt
at

+ ξpβEt

(
Πt+1

Π̄

)1 + θp

θp


Up
t+1 (D.12)

V p
t =

(1 + τ̄ p)

θp
ytc

−σ
t + ξpβEt

(
Πt+1

Π̄

) 1

θp
V p
t+1. (D.13)

The definition of the price level implies

1 = ξp
(
Πt

Π̄

) 1

θp + (1− ξp) (p̃optt )
−
1

θp (D.14)

and price dispersion evolves according to

Ωp
t = ξp

(
Πt

Π̄

)1 + θp

θp Ωp
t−1 + (1− ξp)(p̃optt )

−
1 + θp

θp . (D.15)

D.2 Correct quadratic loss function

Following a large body of the literature, we compute the optimal monetary policy under commitment

from the timeless perspective as the reference point to evaluate the performance of different policies.

Optimality from the timeless perspective assumes that the policymaker can “pre-commit” at the

beginning of time. This assumption converts the optimal policy problem into a recursive problem

with time invariant functions as shown in detail in Benigno and Woodford (2012). As shown in

Bodenstein, Guerrieri, and LaBriola (2014), the first-order approximation to the system of first order

conditions associated with original nonlinear model can be mapped into the LQ problem

max
{x̂t}∞t=t0

Et0

∞∑
t=t0

βt−t0

[
1

2
x̂′
tA(L)x̂t + x̂′

tB(L)ζt+1

]
s.t.

EtC(L)x̂t+1 +D(L)ζt = 0

C(L)x̂t0 = dt0

ζt = Γζt−1 +Υξt (D.16)
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where x̂t0 measures the (log-) deviation of variable “x” from its value assumed in deterministic steady

state. The matrices (A(L), B(L)) capture the second-order approximation of the welfare function,

where “L” denotes the lag-operator. The matrices C(L) and D(L) capture the linear approximation

of the constraints. The linear constraints C(L)x̂t0 = dt0 implement the timeless perspective through

the appropriate choice of dt0 . The model description is completed by the evolution of the exogenous

variables, the last equation in (D.16). The innovations ξt follow iid standard normal distributions.

All welfare relevant matrices in the above LQ problem can be retrieved using the numerical ap-

proach in Bodenstein, Guerrieri, and LaBriola (2014). After retrieving the welfare matrices A(L) and

B(L) and accounting for all zero elements, the approximation to the preferences of the representative

household is given by

L̃s&m =
1

2
a2,2π

2
t +

1

2
a3,3n̂

2
t +

1

2
a8,8ŷ

2
t +

1

2
a11,11n̂

2
t−1 + a3,8n̂tŷt + a3,11n̂tn̂t−1 + a8,11ŷtn̂t−1

+
1

2
a4,4(ˆ̃p

opt
t )2 + a2,6πtÛ

p
t + a2,7πtV̂

p
t + a6,7Û

p
t V̂

p
t +

1

2
a7,7(V̂

p
t )

2

+b3,3n̂tn̂t−1 + b8,3ŷtn̂t−1 + c3,1n̂tât + c3,2n̂tθ̂p,t + c8,1ŷtât + c8,2ŷtθ̂p,t (D.17)

where ŷt is output, πt refers to price inflation, and n̂t stands for employment. ˆ̃poptt is the optimal

price set by re-optimizing firms. Ûp
t and V̂ p

t are log-linear versions of the variables Up
t and V p

t . ât is

technology shock and θ̂p,t is price markup shock. ai,j = A0(i, j), bi,j = A1(i, j), and ci,j = B1(i, j) for

corresponding index (i, j) are the entries in A(L) and B(L). Besides terms that are already present

in the standard New Keynesian model, labor market variables affect the loss function in the search

and matching framework. Current and lagged employment enter the approximation.

When using a first order approximation, the nonlinear equations associated with Calvo sticky

prices can be summarized in the NKPC for price inflation. Therefore, sticky price variables { ˆ̃poptt , Ûp
t , V̂

p
t , Ω̂

p
t}

will only show up in the nonlinear system, but not in the log-linearized system. To make the loss func-

tion correspond to the linear structural equations, these sticky price variables have to be substituted

out.

Log-linearizing the equation (D.14) delivers

ˆ̃poptt =
ξp

1− ξp
πt. (D.18)

Equation (D.18) can be used to substitute out ˆ̃poptt in the loss function.
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Log-linearizing the equation describing the evolution of price dispersion (D.15) provides

Ω̂p
t = ξpΩ̂p

t−1 + ξp
1 + θp

θp
πt − (1− ξp)

1 + θp

θp
ˆ̃poptt

= ξpΩ̂p
t−1. (D.19)

Thus, price dispersion can be ignored to the first order.

Applying the log-linearization for equations (D.11) and (D.14), we have

a2,6πtÛ
p
t + a2,7πtV̂

p
t + a6,7Û

p
t V̂

p
t +

1

2
a7,7(V̂

p
t )

2

= a2,6πt

(
ˆ̃poptt + V̂ p

t

)
+ a2,7πtV̂

p
t + a6,7

(
ˆ̃poptt + V̂ p

t

)
V̂ p
t +

1

2
a7,7(V̂

p
t )

2

= a2,6πt
ˆ̃poptt + a2,6πtV̂

p
t + a2,7πtV̂

p
t + a6,7V̂

p
t
ˆ̃poptt +

(
a6,7 +

1

2
a7,7

)
(V̂ p

t )
2

= a2,6πt
ˆ̃poptt + a2,6πtV̂

p
t + a2,7πtV̂

p
t + a6,7V̂

p
t
ˆ̃poptt

= a2,6
ξp

1− ξp
π2
t +

(
a2,6 + a2,7 + a6,7

ξp

1− ξp

)
πtV̂

p
t

= a2,6
ξp

1− ξp
π2
t (D.20)

The first identity comes from the relationship Ûp
t = ˆ̃poptt + V̂ p

t ; the third identity is true as a6,7 +
1

2
a7,7 = 0; plugging in equation (D.18) gives us the fourth identity; the fifth identity holds as

a2,6 + a2,7 + a6,7
ξp

1− ξp
= 0.

We convert the approximation to household preferences, L̃s&m
t , into a loss function by defining

Ls&m
t = −L̃s&m

t . The loss function in the search and matching model is therefore written as

Ls&m
t = Pπ,ππ

2
t + Py,yŷ

2
t + Pn,nn̂

2
t + Pn−,n−n̂2

t−1 + Py,nn̂tŷt + Py,n− ŷtn̂t−1

+Pn,n−n̂tn̂t−1 + Pn,an̂tât + Pn,pn̂tθ̂p,t + Py,aŷtât + Py,pŷtθ̂p,t (D.21)

where

Pπ,π = −1

2
a2,2 −

1

2
a4,4

(
ξp

1− ξp

)2

− a2,6
ξp

1− ξp

Py,y = −1

2
a8,8

Pn,n = −1

2
a3,3
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Pn−,n− = −1

2
a11,11

Py,n = −1

2
a3,8

Py,n− = − (a8,11 + b8,3)

Pn,n− = − (a3,11 + b3,3)

Pn,a = −c3,1

Pn,p = −c3,2

Py,a = −c8,1

Py,p = −c8,2.

To sum up, the procedure for deriving the correct loss function in the search and matching models

involves:

1. deriving the nonlinear equilibrium conditions for the original model;

2. simplifying the nonlinear system of equations such that it only involves variables that show up

in the log-linearized model, together with sticky price variables {Up
t , V

p
t , p̃

opt
t ,Ωp

t};

3. applying the numerical approach to retrieve welfare matrices based on the simplified equation

system;

4. writing out the loss function by plugging in retrieved welfare matrices;

5. using the log-linearized structural equations to eliminate the sticky price variables {Up
t , V

p
t , p̃

opt
t ,Ωp

t}

in the loss function.

6. obtaining the correct quadratic loss function, even though we can only know numerically the

values of the coefficients which in turn depend on the model’s structural parameters.

We cannot obtain closed form expressions for the composite coefficients in the loss function, but

our approach provides numerical values based on the underlying deep parameters of the model.
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D.3 First order conditions of the LQ problem

The correct LQ system is given by

min
{πt,it,n̂t,ŷt}∞t=0

E0

∞∑
t=0

βt

{
Pπ,ππ

2
t + Py,yŷ

2
t + Pn,nn̂

2
t + Pn−,n−n̂2

t−1 + Py,nn̂tŷt

+Py,n− ŷtn̂t−1 + Pn,n−n̂tn̂t−1 + Pn,an̂tât + Pn,pn̂tθ̂p,t + Py,aŷtât + Py,pŷtθ̂p,t

}
s.t.

πt = βEtπt+1 +
(1− βξp)(1− ξp)

ξp

[(
ϕ+ σ

ϖyss

1− κc

)
ŷt

− (1 + ϕ) ât − (θ1n̂t + θ2n̂t−1)
]
+ θ̂p,t

ŷt = Etŷt+1 −
1

ϖyss

1− κc

σ
(it − Etπt+1)

− 1

ϖyss

1− κc

σ
[(θ1 − ϕ) (Etn̂t+1 − n̂t) + θ2 (n̂t − n̂t−1)]

γ1Etn̂t+1 + γ2n̂t + γ3n̂t−1 =

(
ϕ+ σ

ϖyss

1− κc
+ 1

)
ŷt − (1 + ϕ) ât

−(1− ρ)β

ν
(1− ξqssθss)

(
κv

qss

)
Et [it − πt+1] . (D.22)

The problem is to minimize the quadratic objective function subject to the structural equations.

Taking first order conditions delivers

(it) :
1

ϖyss

1− κc

σ
Λ2,t +

(1− ρ)β

ν
(1− ξqssθss)

(
κv

qss

)
Λ3,t = 0 (D.23)

(πt) : 2Pπ,ππt + Λ1,t − Λ1,t−1 −
1

β

1

ϖyss

1− κc

σ
Λ2,t−1

− 1

β

(1− ρ)β

ν
(1− ξqssθss)

(
κv

qss

)
Λ3,t−1 = 0 (D.24)

(ŷt) : 2Py,yŷt + Py,nn̂t + Py,n−n̂t−1 + Py,aât + Py,pθ̂p,t

−(1− βξp)(1− ξp)

ξp

(
ϕ+ σ

ϖyss

1− κc

)
Λ1,t + Λ2,t −

1

β
Λ2,t−1

−
(
ϕ+ σ

ϖyss

1− κc
+ 1

)
Λ3,t = 0 (D.25)

(n̂t) : 2Pn,nn̂t + 2βPn−,n−n̂t + Py,nŷt + βPy,n−Etŷt+1 + Pn,n−n̂t−1

+βPn,n−Etn̂t+1 + Pn,aât + Pn,pθ̂p,t +
(1− βξp)(1− ξp)

ξp
θ1Λ1,t

+β
(1− βξp)(1− ξp)

ξp
θ2EtΛ1,t+1 +

1

ϖyss

1

β

1− κc

σ
(θ1 − ϕ)Λ2,t−1
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− 1

ϖyss

1− κc

σ
(θ1 − ϕ)Λ2,t +

1

ϖyss

1− κc

σ
θ2Λ2,t −

1

ϖyss
β
1− κc

σ
θ2EtΛ2,t+1

+
1

β
γ1Λ3,t−1 + γ2Λ3,t + βγ3EtΛ3,t+1 = 0 (D.26)

D.4 Substituting out Lagrange multipliers and the optimal targeting

rule

To simplify notation, we define

ø1 = ϕ+
ϖyssσ

1− κc

κp =
(1− βξp)(1− ξp)

ξp

νΛ = −

1

ϖyss

1−κc

σ

(1−ρ)β
ν

(1− ξqssθss)
(

κv

qss

)
GΛ

t = 2Py,yŷt + Py,nn̂t + Py,n−n̂t−1 + Py,aât + Py,pθ̂p,t

HΛ
t = 2Pn,nn̂t + 2βPn−,n−n̂t + Py,nŷt + βPy,n−Etŷt+1 + Pn,n−n̂t−1 + βPn,n−Etn̂t+1

+Pn,aât + Pn,pθ̂p,t.

Then the set of first order conditions simplifies to

(it) : Λ3,t = νΛΛ2,t (D.27)

(πt) : 2Pπ,ππt + Λ1,t − Λ1,t−1 = 0 (D.28)

(ŷt) : GΛ
t − κpø1Λ1,t + Λ2,t −

1

β
Λ2,t−1 − (1 + ø1) Λ3,t = 0 (D.29)

(n̂t) : HΛ
t + κpθ1Λ1,t + κpβθ2EtΛ1,t+1 +

1

ø1 − ϕ

1

β
(θ1 − ϕ)Λ2,t−1 +

1

ø1 − ϕ
(θ2 + ϕ− θ1) Λ2,t

− 1

ø1 − ϕ
βθ2EtΛ2,t+1 +

1

β
γ1Λ3,t−1 + γ2Λ3,t + βγ3EtΛ3,t+1 = 0. (D.30)

Substituting out Λ3,t in equations (D.29) and (D.30) by using equation (D.27) we obtain

GΛ
t − κpø1Λ1,t +

[
1− (1 + ø1) ν

Λ
]
Λ2,t −

1

β
Λ2,t−1 = 0 (D.31)
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and

HΛ
t + κpθ1Λ1,t + κpβθ2EtΛ1,t+1 +

1

ø1 − ϕ

1

β
(θ1 − ϕ)Λ2,t−1 +

1

ø1 − ϕ
(θ2 + ϕ− θ1) Λ2,t

− 1

ø1 − ϕ
βθ2EtΛ2,t+1 +

1

β
γ1ν

ΛΛ2,t−1 + γ2ν
ΛΛ2,t + βγ3ν

ΛEtΛ2,t+1

= HΛ
t + κpθ1Λ1,t + κpβθ2EtΛ1,t+1 +

[
1

ø1 − ϕ

1

β
(θ1 − ϕ) +

1

β
γ1ν

Λ

]
Λ2,t−1

+

[
1

ø1 − ϕ
(θ2 + ϕ− θ1) + γ2ν

Λ

]
Λ2,t +

[
βγ3ν

Λ − 1

ø1 − ϕ
βθ2

]
EtΛ2,t+1

= 0. (D.32)

Since price inflation is defined as the change in the price level (in terms of deviation from steady

state) πt = P̂t − P̂t−1, we can express Λ1,t as proportional to the price level P̂t from equation (D.28).

At the same time, the equation πt = P̂t − P̂t−1 has to be added to the system. It is straightforward

to show that

Λ1,t = −2Pπ,πP̂t. (D.33)

Plugging the expression of Λ1,t into equation (D.31) and (D.32),

GΛ
t − κpø1Λ1,t +

[
1− (1 + ø1) ν

Λ
]
Λ2,t −

1

β
Λ2,t−1

= GΛ
t + 2κpø1Pπ,πP̂t +

[
1− (1 + ø1) ν

Λ
]
Λ2,t −

1

β
Λ2,t−1

= 0 (D.34)

and

HΛ
t + κpθ1Λ1,t + κpβθ2EtΛ1,t+1 +

[
1

ø1 − ϕ

1

β
(θ1 − ϕ) +

1

β
γ1ν

Λ

]
Λ2,t−1

+

[
1

ø1 − ϕ
(θ2 + ϕ− θ1) + γ2ν

Λ

]
Λ2,t +

[
βγ3ν

Λ − 1

ø1 − ϕ
βθ2

]
EtΛ2,t+1

= HΛ
t − 2κpθ1Pπ,πP̂t − 2κpβθ2Pπ,πEtP̂t+1 +

[
1

ø1 − ϕ

1

β
(θ1 − ϕ) +

1

β
γ1ν

Λ

]
Λ2,t−1

+

[
1

ø1 − ϕ
(θ2 + ϕ− θ1) + γ2ν

Λ

]
Λ2,t +

[
βγ3ν

Λ − 1

ø1 − ϕ
βθ2

]
EtΛ2,t+1

= 0. (D.35)
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We further define

χΛ
−1 =

[
1

ø1 − ϕ

1

β
(θ1 − ϕ) +

1

β
γ1ν

Λ

]
χΛ
0 =

[
1

ø1 − ϕ
(θ2 + ϕ− θ1) + γ2ν

Λ

]
χΛ
1 =

[
βγ3ν

Λ − 1

ø1 − ϕ
βθ2

]
βδ =

1

β [1− (1 + ø1) νΛ]

χΛ2 =

(
χΛ
−1

βδ

+ χΛ
0 + χΛ

1 βδ

)
.

From equation (D.34), we get

Λ2,t −
1

β [1− (1 + ø1) νΛ]
Λ2,t−1 = − 1

1− (1 + ø1) νΛ

(
GΛ

t + 2κpø1Pπ,πP̂t

)
(D.36)

or

Λ2,t − βδΛ2,t−1 = −ββδ

(
GΛ

t + 2κpø1Pπ,πP̂t

)
. (D.37)

This equation implies an expression for Λ2,t

Λ2,t = −ββδ

∞∑
s=0

(βδ)
s
(
GΛ

t−s + 2κpø1Pπ,πP̂t−s

)
= −ββδ

∞∑
s=0

(βδ)
s
(
2Py,yŷt−s + Py,nn̂t−s + Py,n−n̂t−1−s + Py,aât−s

+Py,pθ̂p,t−s + 2κpø1Pπ,πP̂t−s

)
= −ββδ2Py,y

∞∑
s=0

(βδ)
s ŷt−s − ββδPy,n

∞∑
s=0

(βδ)
s n̂t−s − ββδPy,n−

∞∑
s=0

(βδ)
s n̂t−1−s

−ββδPy,a

∞∑
s=0

(βδ)
s ât−s − ββδPy,p

∞∑
s=0

(βδ)
s θ̂p,t−s − ββδ2κ

pø1Pπ,π

∞∑
s=0

(βδ)
s P̂t−s

= −ββδ2Py,yŷ
WA
t − ββδPy,nn̂

WA
t − ββδPy,n−n̂WA

t−1 − ββδPy,aâ
WA
t

−ββδPy,pθ̂
WA

p,t − ββδ2κ
pø1Pπ,πP̂

WA
t

= −ββδ

[
2Py,yŷ

WA
t +

(
Py,n +

Py,n−

βδ

)
n̂WA
t −

Py,n−

βδ

n̂t

+Py,aâ
WA
t + Py,pθ̂

WA

p,t + 2κpø1Pπ,πP̂
WA
t

]
.
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Finally, we can express Λ2,t as

Λ2,t = −ββδ

[
2Py,yŷ

WA
t +

(
Py,n +

Py,n−

βδ

)
n̂WA
t −

Py,n−

βδ

n̂t

+Py,aâ
WA
t + Py,pθ̂

WA

p,t + 2κpø1Pπ,πP̂
WA
t

]
(D.38)

where ŷWA
t , n̂WA

t , âWA
t , θ̂

WA

p,t , and P̂WA
t are the weighted averages of historical realizations with

ŷWA
t =

∞∑
s=0

(βδ)
s ŷt−s (D.39)

n̂WA
t =

∞∑
s=0

(βδ)
s n̂t−s (D.40)

âWA
t =

∞∑
s=0

(βδ)
s ât−s (D.41)

θ̂
WA

p,t =
∞∑
s=0

(βδ)
s θ̂p,t−s (D.42)

P̂WA
t =

∞∑
s=0

(βδ)
s P̂t−s (D.43)

or written recursively

ŷWA
t = βδŷ

WA
t−1 + ŷt (D.44)

n̂WA
t = βδn̂

WA
t−1 + n̂t (D.45)

âWA
t = βδâ

WA
t−1 + ât (D.46)

θ̂
WA

p,t = βδθ̂
WA

p,t−1 + θ̂p.t (D.47)

P̂WA
t = βδP̂

WA
t−1 + P̂t. (D.48)

Substituting equation (D.37) into equation (D.35) and using the newly defined coefficients,

HΛ
t − 2κpθ1Pπ,πP̂t − 2κpβθ2Pπ,πEtP̂t+1 +

[
1

ø1 − ϕ

1

β
(θ1 − ϕ) +

1

β
γ1ν

Λ

]
Λ2,t−1

+

[
1

ø1 − ϕ
(θ2 + ϕ− θ1) + γ2ν

Λ

]
Λ2,t +

[
βγ3ν

Λ − 1

ø1 − ϕ
βθ2

]
EtΛ2,t+1

= HΛ
t − 2κpθ1Pπ,πP̂t − 2κpβθ2Pπ,πEtP̂t+1 + χΛ

−1

(
1

βδ

Λ2,t + β
(
GΛ

t + 2κpø1Pπ,πP̂t

))
+χΛ

0Λ2,t + χΛ
1

(
βδΛ2,t − ββδ

(
EtG

Λ
t+1 + 2κpø1Pπ,πEtP̂t+1

))
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= HΛ
t + χΛ

−1βG
Λ
t − χΛ

1 ββδEtG
Λ
t+1 +

(
χΛ
−1β2κ

pø1Pπ,π − 2κpθ1Pπ,π

)
P̂t

−
(
2κpβθ2Pπ,π + χΛ

1 ββδ2κ
pø1Pπ,π

)
EtP̂t+1 +

(
χΛ
−1

βδ

+ χΛ
0 + χΛ

1 βδ

)
Λ2,t

= HΛ
t + χΛ

−1βG
Λ
t − χΛ

1 ββδEtG
Λ
t+1 +

(
χΛ
−1β2κ

pø1Pπ,π − 2κpθ1Pπ,π

)
P̂t

−
(
2κpβθ2Pπ,π + χΛ

1 ββδ2κ
pø1Pπ,π

)
EtP̂t+1 + χΛ2Λ2,t

=

(
2Pn,n + 2βPn−,n− + χΛ

−1βPy,n − χΛ
1 ββδPy,n− + χΛ2ββδ

Py,n−

βδ

)
n̂t

+
(
Pn,n− + χΛ

−1βPy,n−
)
n̂t−1 +

(
βPn,n− − χΛ

1 ββδPy,n

)
Etn̂t+1

+
(
Py,n + χΛ

−1β2Py,y

)
ŷt +

(
βPy,n− − χΛ

1 ββδ2Py,y

)
Etŷt+1

+
(
Pn,a + χΛ

−1βPy,a

)
ât +

(
Pn,p + χΛ

−1βPy,p

)
θ̂p,t

−χΛ
1 ββδPy,aEtât+1 − χΛ

1 ββδPy,pEtθ̂p,t+1

+
(
χΛ
−1β2κ

pø1Pπ,π − 2κpθ1Pπ,π

)
P̂t −

(
2κpβθ2Pπ,π + χΛ

1 ββδ2κ
pø1Pπ,π

)
EtP̂t+1

−χΛ2ββδ

[
2Py,yŷ

WA
t +

(
Py,n +

Py,n−

βδ

)
n̂WA
t + Py,aa

WA
t

+Py,pθ
WA
p,t + 2κpø1Pπ,πP̂

WA
t

]
. (D.49)

If the technology shock and the markup shock follow AR(1) process, then

Etât+1 = ρaât (D.50)

Etθ̂p,t+1 = ρpθ̂p,t. (D.51)

Together with the definition of price inflation πt = P̂t − P̂t−1, we have

0 =

(
2Pn,n + 2βPn−,n− + χΛ

−1βPy,n − χΛ
1 ββδPy,n− + χΛ2ββδ

Py,n−

βδ

)
n̂t

+
(
Pn,n− + χΛ

−1βPy,n−
)
n̂t−1 +

(
βPn,n− − χΛ

1 ββδPy,n

)
Etn̂t+1

+
(
Py,n + χΛ

−1β2Py,y

)
ŷt +

(
βPy,n− − χΛ

1 ββδ2Py,y

)
Etŷt+1

+
(
Pn,a + χΛ

−1βPy,a − χΛ
1 ββδPy,aρa

)
ât +

(
Pn,p + χΛ

−1βPy,p − χΛ
1 ββδPy,pρp

)
θ̂p,t

+
[(
χΛ
−1β2κ

pø1Pπ,π − 2κpθ1Pπ,π

)
−
(
2κpβθ2Pπ,π + χΛ

1 ββδ2κ
pø1Pπ,π

)]
P̂t

−
(
2κpβθ2Pπ,π + χΛ

1 ββδ2κ
pø1Pπ,π

)
Etπt+1

−χΛ2ββδ

[
2Py,yŷ

WA
t +

(
Py,n +

Py,n−

βδ

)
n̂WA
t + Py,aa

WA
t

+Py,pθ
WA
p,t + 2κpø1Pπ,πP̂

WA
t

]
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=

(
2Pn,n + 2βPn−,n− + χΛ

−1βPy,n − χΛ
1 ββδPy,n− + χΛ2ββδ

Py,n−

βδ

)
n̂t

+
(
Pn,n− + χΛ

−1βPy,n−
)
n̂t−1 +

(
βPn,n− − χΛ

1 ββδPy,n

)
Etn̂t+1

+
(
Py,n + χΛ

−1β2Py,y

)
ŷt +

(
βPy,n− − χΛ

1 ββδ2Py,y

)
Etŷt+1

+
(
Pn,a + χΛ

−1βPy,a − χΛ
1 ββδPy,aρa

)
ât +

(
Pn,p + χΛ

−1βPy,p − χΛ
1 ββδPy,pρp

)
θ̂p,t

+
[(
χΛ
−1β2κ

pø1Pπ,π − 2κpθ1Pπ,π

)
−
(
2κpβθ2Pπ,π + χΛ

1 ββδ2κ
pø1Pπ,π

)]
πt

−
(
2κpβθ2Pπ,π + χΛ

1 ββδ2κ
pø1Pπ,π

)
Etπt+1

+
[(
χΛ
−1β2κ

pø1Pπ,π − 2κpθ1Pπ,π

)
−
(
2κpβθ2Pπ,π + χΛ

1 ββδ2κ
pø1Pπ,π

)]
P̂t−1

−χΛ2ββδ

[
2Py,yŷ

WA
t +

(
Py,n +

Py,n−

βδ

)
n̂WA
t + Py,aa

WA
t

+Py,pθ
WA
p,t + 2κpø1Pπ,πP̂

WA
t

]
. (D.52)

Hence, the optimal targeting rule is given by,

ϖ1n̂t +ϖ2n̂t−1 +ϖ3n̂t+1 +ϖ4ŷt +ϖ5ŷt+1 +ϖ6ât +ϖ7θ̂p,t +ϖ8πt +ϖ9πt+1

+ϖ10P̂t−1 +ϖ11ŷ
WA
t +ϖ12n̂

WA
t +ϖ13â

WA
t +ϖ14θ̂

WA

p,t +ϖ15P̂
WA
t = 0 (D.53)

where we define

πt = P̂t − P̂t−1 (D.54)

ŷWA
t = βδŷ

WA
t−1 + ŷt (D.55)

n̂WA
t = βδn̂

WA
t−1 + n̂t (D.56)

âWA
t = βδâ

WA
t−1 + ât (D.57)

θ̂
WA

p,t = βδθ̂
WA

p,t−1 + θ̂p.t (D.58)

P̂WA
t = βδP̂

WA
t−1 + P̂t (D.59)

and

ϖ1 =

(
2Pn,n + 2βPn−,n− + χΛ

−1βPy,n − χΛ
1 ββδPy,n− + χΛ2ββδ

Py,n−

βδ

)
ϖ2 =

(
Pn,n− + χΛ

−1βPy,n−
)

ϖ3 =
(
βPn,n− − χΛ

1 ββδPy,n

)
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ϖ4 =
(
Py,n + χΛ

−1β2Py,y

)
ϖ5 =

(
βPy,n− − χΛ

1 ββδ2Py,y

)
ϖ6 =

(
Pn,a + χΛ

−1βPy,a − χΛ
1 ββδPy,aρa

)
ϖ7 =

(
Pn,p + χΛ

−1βPy,p − χΛ
1 ββδPy,pρp

)
ϖ8 =

[(
χΛ
−1β2κ

pø1Pπ,π − 2κpθ1Pπ,π

)
−
(
2κpβθ2Pπ,π + χΛ

1 ββδ2κ
pø1Pπ,π

)]
ϖ9 = −

(
2κpβθ2Pπ,π + χΛ

1 ββδ2κ
pø1Pπ,π

)
ϖ10 =

[(
χΛ
−1β2κ

pø1Pπ,π − 2κpθ1Pπ,π

)
−
(
2κpβθ2Pπ,π + χΛ

1 ββδ2κ
pø1Pπ,π

)]
ϖ11 = −χΛ2ββδ2Py,y

ϖ12 = −χΛ2ββδ

(
Py,n +

Py,n−

βδ

)
ϖ13 = −χΛ2ββδPy,a

ϖ14 = −χΛ2ββδPy,p

ϖ15 = −χΛ2ββδ2κ
pø1Pπ,π

and the additional parameters

ø1 = ϕ+
ϖyssσ

1− κc

κp =
(1− βξp)(1− ξp)

ξp

νΛ = −

1

ϖyss

1−κc

σ

(1−ρ)β
ν

(1− ξqssθss)
(

κv

qss
+ κ̄
)

χΛ
−1 =

[
1

ø1 − ϕ

1

β
(θ1 − ϕ) +

1

β
γ1ν

Λ

]
χΛ
0 =

[
1

ø1 − ϕ
(θ2 + ϕ− θ1) + γ2ν

Λ

]
χΛ
1 =

[
βγ3ν

Λ − 1

ø1 − ϕ
βθ2

]
βδ =

1

β [1− (1 + ø1) νΛ]

χΛ2 =

(
χΛ
−1

βδ

+ χΛ
0 + χΛ

1 βδ

)
.
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E Optimal targeting rule for the model with sticky nominal

wages

To find the optimal targeting rule in the sticky wage model, we follow Giannoni and Woodford (2003).

The linear quadratic problem can be shown to be

min
{πt,πw

t ,xt,it,ŵt}∞t=0

E0

∞∑
t=0

βt

{
σ + ϕ

2
x2
t +

1 + θp

2θpκp
π2
t +

1 + θw

2θwκw
(πw

t )
2

}
s.t. xt = Etxt+1 −

1

σ
(it − Etπt+1 − r̂∗t ) (Λ1,t)

πt = βEtπt+1 + κp (ŵt − ât) + θ̂p,t (Λ2,t)

πw
t = βEtπ

w
t+1 + κw (σ + ϕ)xt − κw (ŵt − ât) (Λ3,t)

ŵt = ŵt−1 + πw
t − πt (Λ4,t) (E.1)

where

θp = λp − 1 (E.2)

θw = λw − 1 (E.3)

κp =
(1− ξp)(1− ξpβ)

ξp
(E.4)

κw =
(1− ξw)(1− ξwβ)

ξw
(
1 + ϕ1+θw

θw

) . (E.5)

The first order conditions associated with the policymaker’s preferences are

(πt) :
1 + θp

θpκp
πt +

β−1

σ
Λ1,t−1 + Λ2,t−1 − Λ2,t − Λ4,t = 0 (E.6)

(πw
t ) :

1 + θw

θwκw
(πw

t ) + Λ3,t−1 − Λ3,t + Λ4,t = 0 (E.7)

(xt) : (σ + ϕ) xt + β−1Λ1,t−1 − Λ1,t + κw (σ + ϕ) Λ3,t = 0 (E.8)

(it) :
1

σ
Λ1,t = 0 (E.9)

(wt) : κpΛ2,t − κwΛ3,t + βΛ4,t+1 − Λ4,t = 0. (E.10)

From equation (E.9), we obtain

Λ1,t = 0 ∀t. (E.11)
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Accordingly, the optimality conditions simplify to

(πt) :
1 + θp

θpκp
πt + Λ2,t−1 − Λ2,t − Λ4,t = 0 (E.12)

(πw
t ) :

1 + θw

θwκw
(πw

t ) + Λ3,t−1 − Λ3,t + Λ4,t = 0 (E.13)

(xt) : (σ + ϕ)xt + κw (σ + ϕ) Λ3,t = 0 (E.14)

(wt) : κpΛ2,t − κwΛ3,t + βΛ4,t+1 − Λ4,t = 0. (E.15)

From equation (E.14), it is

Λ3,t = − 1

κw
xt. (E.16)

Then substituting Λ3,t into equation (E.13), we get an expression for Λ4,t

Λ4,t = −1 + θw

θwκw
(πw

t )−
1

κw
xt +

1

κw
xt−1. (E.17)

Plugging the expressions for Λ3,t and Λ4,t into equation (E.15) delivers Λ2,t

Λ2,t = β
1 + θw

θwκwκp
(πw

t+1)−
1 + θw

θwκwκp
(πw

t ) +
β

κwκp
xt+1

+
1

κwκp
xt−1 −

(
β

κwκp
+

1

κwκp
+

1

κp

)
xt. (E.18)

After substituting the expressions for Λ2,t and Λ4,t into equation (E.12) and using the definition of

the output gap (xt = ŷt − 1+ϕ
σ+ϕ

ât), the optimal targeting rule for the sticky wage model is given by

−χ1πt = χ2

(
πw
t+1 − πw

t

)
+ χ3π

w
t + χ4

(
πw
t − πw

t−1

)
+ χ5

[
(ŷt+1 − ŷt)−

1 + ϕ

σ + ϕ
(ât+1 − ât)

]
+χ6

[
(ŷt − ŷt−1)−

1 + ϕ

σ + ϕ
(ât − ât−1)

]
+ χ7

[
(ŷt−1 − ŷt−2)−

1 + ϕ

σ + ϕ
(ât−1 − ât−2)

]
(E.19)

where

χ1 =
1 + θp

θp
1

κp

χ2 = −β
1 + θw

θw
1

κpκw
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χ3 =
1 + θw

θw
1

κw

χ4 =
1 + θw

θw
1

κpκw

χ5 = − β

κpκw

χ6 =

(
1

κpκw
+

β

κpκw
+

1

κp
+

1

κw

)
χ7 = − 1

κpκw
.

Another way of writing the optimal targeting rule is

0 =

{
1 + θp

θp
πt +

[
(ŷt − ŷt−1)−

1 + ϕ

σ + ϕ
(ât − ât−1)

]}
+

1

κw
(1 + β + κp)

{
1 + θw

θw
πw
t +

[
(ŷt − ŷt−1)−

1 + ϕ

σ + ϕ
(ât − ât−1)

]}
− β

κw

{
1 + θw

θw
πw
t+1 +

[
(ŷt+1 − ŷt)−

1 + ϕ

σ + ϕ
(ât+1 − ât)

]}
− 1

κw

{
1 + θw

θw
πw
t−1 +

[
(ŷt−1 − ŷt−2)−

1 + ϕ

σ + ϕ
(ât−1 − ât−2)

]}
(E.20)

which boils down to the targeting rule in the standard New Keynesian model with flexible wages for

1
κw = 0.
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F Additional results and discussions

This section discusses the functional form of the policy rule used in Section 6 of the main text.

F.1 Functional form of the policy rule

In principle, the simple rule in equation (36) of the main text allows the policymaker to respond to

the lagged value of the nominal interest rate, price and wage inflation, and the output gap. However,

the response coefficient on each variable is assigned the value of zero for some ω; the patterns of

zeroes define the three distinct regions of the ω-optimal simple rules in Table 3 of the main text for

the model averaging approach. To assess the sensitivity of our findings to the functional form of the

simple rule, Table 1 of this Appendix reports optimal simple rules that, in comparison to (36) of

the main text, are restricted not to respond to either the lagged interest rate, the output gap, price

inflation, or wage inflation, respectively.4

Absent interest rate smoothing (Case I in Table 1), the optimal simple rule changes only for

ω ≥ 0.9 compared to Table 3 of the main text. The response coefficient for price inflation becomes

very large to compensate for the lack of interest rate smoothing in the rule, but overall welfare and

welfare in the search and matching model deteriorate nevertheless. In its eagerness to fight price

inflation, the rule for ω = 1 and ρR = 0 is particularly unattractive, as it induces welfare losses in the

sticky wage model that by far exceed the corresponding loss in Table 3 Panel(a) of the main text.

Eliminating the output gap from the list of response variables (Case II) affects the computations

of the optimal simple rules only for ω ≤ 0.2. These restricted rules respond to wage inflation by

more than in Table 3 of the main text—the optimizer reaches the upper bound of 100—where the

ω-optimal simple rule responded importantly to the output gap for ω ≤ 0.2. The overall welfare loss

is higher mostly because the restricted rules perform worse in the sticky wage model.

More dramatic changes in the optimal simple rules appear if the rules are restricted not to respond

to price inflation or wage inflation (Case III). Setting ρπ = 0 leads to higher response coefficients for

wage inflation and, depending on the value of ω, the output gap or interest rate smoothing. The

deterioration in overall welfare is borne by the search and matching model; welfare in the sticky wage

model improves for most values of ω and never declines.

4 The presence of three distinct parameter regions in Table 3 Panel (a) of the main text under model averaging
suggests the existence of multiple local optima. In computing restricted optimal simple rules we can also confirm that
the ω-optimal simple rules are indeed globally optimal.
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Finally, when eliminating the policymaker’s ability to respond to wage inflation directly, welfare

losses increase in both the sticky wage and the search and matching model for most values of ω (Case

IV). The form of the simple rule in this final case coincides with the specification adopted in our

estimation. Even more so, under ω = 0.6 and ω = 0.7, the restricted optimal simple rules feature

parameter values that are close to the values retrieved in our estimation: the interest rate smoothing

coefficient lies around 0.8 and the short-run coefficient assigned to price inflation lies between 0.1

and 0.2. If we interpret the estimated simple rules obtained in Section 4 (which basically coincide

for the two models) as arising from optimal policy considerations under model uncertainty—where

the policymaker intentionally excludes a direct response to wage inflation—U.S. policymakers assign

probability 0.6 to 0.7 to the search and matching model being the true data-generating process.

F.2 Wage indexation

We investigate, whether the lack of robustness of the optimal targeting rules depends on our assump-

tion to abstract from wage indexation in the sticky wage model.

The estimation results in Table 2 and Figure 1 of this Appendix suggest that the empirical fit of

the sticky wage model improves if we allow for full indexation of wages to past inflation. In this case,

the focus of optimal monetary policy in the sticky wage model shifts from smoothing wage inflation

to smoothing the difference between wage inflation and lagged price inflation, i.e., πw
t − πt−1.

This change in focus of the optimal policy is also reflected in the optimal targeting rule derived

for the sticky wage model with ιω = 1. Figure 2 plots selected impulse responses to a markup shock

when the sticky wage model features full wage indexation when we repeat the exercise of comparing

the outcomes in the search and matching model and the sticky wage model (now with ιω = 1) under

the optimal targeting rules derived in the two models, respectively. Under full wage indexation, the

optimal monetary policy in the sticky wage model refrains from stabilizing wage inflation; to reduce

welfare-costly dispersion in the nominal wage, the central bank smoothes the term πw
t − πt−1. Under

the markup shock, the decline in the real wage is still engineered by raising inflation in the impact

period. Yet, the rise in price inflation this period pushes up nominal wages in the subsequent period

through indexation which in turn offsets most of the decline in the real wage. To compensate for

this effect, price inflation rises by more in the impact period under the optimal policy in the model

with indexation than absent indexation. Turning to the optimal targeting rule derived in the search

and matching model, this rule with its focus on reducing price inflation induces even bigger welfare
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losses (measured as CEV) in the sticky wage model with full indexation than in the model without

indexation (now 1.9728 instead of 1.3033), confirming the lack of robustness of the optimal targeting

rules.

For the search and matching model, wage indexation in the sticky wage model only impacts

the responses under the optimal targeting rule from the sticky wage model relative to the previous

discussion; the differences between the two targeting rules are mostly quantitative in nature. Given

the modified focus of the new targeting rule from the sticky wage model, wage inflation is not

stabilized as forcefully as in Figure 4 of the main text. Yet, since nominal wages in period t move

to offset past inflation, the downward adjustment in the real wage demands even larger movements

in inflation than under the no-indexation targeting rule. Thus, the overall welfare loss in the search

and matching model (measured as CEV) rises (now 0.1680 instead of 0.1133 for ιω = 0).
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Table 1: Restricted Optimal Simple Rules

Model Averaging Prior
Restricted Optimal Rule Welfare Loss

ρR ρπ ρwπ ρx Objective Ls&m
t (Θ∗) Lsw

t (Θ∗)

Case I:

(0, 1) 0 0 65.8388 2.3084 3.1047 2.1567 3.1047

No interest rate smoothing

(0.1, 0.9) 0 0 60.6858 1.9798 3.0099 2.1566 3.1048

(0.2, 0.8) 0 0 55.4967 1.6522 2.9151 2.1565 3.1048

(0.3, 0.7) 0 0.6230 0.5235 0 2.8139 2.1028 3.1186

(0.4, 0.6) 0 0.6369 0.5160 0 2.7123 2.1025 3.1188

(0.5, 0.5) 0 0.6561 0.5133 0 2.6106 2.1022 3.1190

(0.6, 0.4) 0 0.7006 0.5159 0 2.5088 2.1014 3.1199

(0.7, 0.3) 0 0.8136 0.5231 0 2.4067 2.0994 3.1240

(0.8, 0.2) 0 1.1724 0.5245 0 2.3031 2.0920 3.1475

(0.9, 0.1) 0 2.2488 0.4734 0 2.1922 2.0730 3.2651

(1, 0) 0 51.5995 5.2078 0.5170 2.0485 2.0485 20.0584

Case II:

(0, 1) 0 0 100 0 3.1059 2.1556 3.1059

No output gap

(0.1, 0.9) 0 0 100 0 3.0108 2.1556 3.1059

(0.2, 0.8) 0 0 100 0 2.9158 2.1556 3.1059

(0.3, 0.7) 0 0.6242 0.5224 0 2.8139 2.1028 3.1186

(0.4, 0.6) 0 0.6389 0.5167 0 2.7123 2.1025 3.1188

(0.5, 0.5) 0 0.6564 0.5130 0 2.6106 2.1022 3.1190

(0.6, 0.4) 0 0.7012 0.5160 0 2.5088 2.1014 3.1200

(0.7, 0.3) 0 0.8179 0.5238 0 2.4067 2.0993 3.1242

(0.8, 0.2) 0 1.1725 0.5245 0 2.3031 2.0920 3.1475

(0.9, 0.1) 0.8177 0.8860 0 0 2.1870 2.0623 3.3098

(1, 0) 0.9366 2.1197 0 0 2.0477 2.0477 4.0851

Case III:

(0, 1) 0 0 66.0161 2.3594 3.1047 2.1567 3.1047

No price inflation

(0.1, 0.9) 0 0 61.0171 1.9932 3.0099 2.1566 3.1048

(0.2, 0.8) 0 0 56.0134 1.6655 2.9151 2.1565 3.1048

(0.3, 0.7) 0 0 93.0510 2.1243 2.8203 2.1563 3.1048

(0.4, 0.6) 0 0 93.5958 2.3938 2.7254 2.1564 3.1048

(0.5, 0.5) 0.5709 0 5.0689 0.2221 2.6309 2.1554 3.1063

(0.6, 0.4) 0.3093 0 20.0193 0.4160 2.5357 2.1559 3.1055

(0.7, 0.3) 0.4090 0 20.0150 0.2744 2.4407 2.1556 3.1060

(0.8, 0.2) 0.5257 0 20.0071 0.1165 2.3457 2.1554 3.1067

(0.9, 0.1) 0.6127 0 19.9914 0 2.2505 2.1553 3.1075

(1, 0) 0.9269 0 19.3246 0 2.1552 2.1552 3.1076

Case IV:

(0, 1) 0 1.0001 0 12.0434 3.1107 2.2814 3.1107

No wage inflation

(0.1, 0.9) 0.0587 0.9414 0 2.3607 3.0267 2.2598 3.1119

(0.2, 0.8) 0.9900 0.0113 0 0.0011 2.9370 2.1308 3.1386

(0.3, 0.7) 0.9900 0.0112 0 7.5200e04 2.8357 2.1232 3.1410

(0.4, 0.6) 0.9900 0.0111 0 5.1800e04 2.7335 2.1178 3.1439

(0.5, 0.5) 0.9900 0.0110 0 3.1900e-04 2.6304 2.1130 3.1478

(0.6, 0.4) 0.9079 0.1172 0 0 2.5243 2.1024 3.1572

(0.7, 0.3) 0.8947 0.2260 0 0 2.4176 2.0912 3.1790

(0.8, 0.2) 0.8669 0.4487 0 0 2.3061 2.0769 3.2226

(0.9, 0.1) 0.8177 0.8861 0 0 2.1870 2.0623 3.3099

(1, 0) 0.9366 2.1204 0 0 2.0477 2.0477 4.0856

Note: Table 1 reports the optimal simple rules under the model averaging approach similar to Table 3 of the main

text when restricting the rule not to respond to one of the variables in equation (35) of the main text at the time. See

also footnote Table 3 of the main text. 43



Table 2: Estimated Parameters

Description Estimated Parameter Search Sticky Wage Sticky Wage with Indexation

interest rate smoothing ρR 0.8555 0.8379 0.8895

[0.0294] [0.0450] [0.0260]

weights on inflation ρπ 0.1445 0.1622 0.1105

[1.5e-05] [3.12e-05] [2.4e-05]

std technology shock σa 0.0031 0.0033 [0.0031]

[0.0002] [ 0.0002] [0.0002]

habit persistence µ 0 0 0

[0.5148] [0.4394] [0.7734]

replacement ratio ru 0.5345 - -

[0.0185] - -

price indexation ιp 0 0 0

[0.3123] [0.3204] [0.2714]

wage indexation ιw - - 1

- - [0.1656]

Minimum Distance Estimator

Description Search Sticky Wage Sticky Wage with Indexation

criterion value (9 variables) 124.8128 - -

criterion value (6 variables) 99.6490 136.0783 77.2143

Note: The top panel of Table 2 summarizes the estimated parameters for the model with search and matching frictions

and the model with and without wage indexation. The parameters are estimated using impulse response function

matching under neutral technology shocks. The empirical impulse responses against which the performance of the

theoretical models is assessed are taken from the SVAR estimation in Christiano, Eichenbaum, and Trabandt (2016).

The numbers in the square bracket are the standard deviations of the estimates. The lower panel provides the value

of the criterion function at the minimum.
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Figure 1: Impulse response function matching under neutral technology shock

Note: Figure 1 depicts the impulse responses to a neutral technology shock in the search and matching model (blue)

and the sticky wage model (red). The solid black lines show the point estimates of the empirical impulse responses

along with the 90% confidence interval, the grey shaded area. Inflation rates and the federal fund rate are annualized.
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Figure 2: Targeting rules with wage indexation in the sticky wage model: price markup shock
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Note: Figure 2 compares the performance of optimal targeting rules for both the search and matching model and the

sticky wage model in response to a price markup shock when the sticky wage model features wage indexation.
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