Dynamics of Secured and Unsecured Debt Over the Business Cycle

Paul Luk, Hong Kong Baptist University

Tianxiao Zheng, SAIF, Shanghai Jiao Tong University

Introduction

- Firms have heterogeneous debt structure
- Unsecured debt is much more procyclical thar secured debt. (Azariadis, Kaas and Wen, 2016)
- We depart from standard macro-finance setups by modelling heterogeneous debt structure in firms.

Main Findings

- Borrowers and lenders in unsecured debt contracts are more cautious relative to secured debt.
- The model matches following stylized facts:

High-credit-quality firms have lower leverage Uigh-credit-quality firms have

Unsecured debt is procyc Secured debt is acyclical.

- Financial accelerator mechanism associated with unsecured debt has less amplification than Bernanke et al. (1999).

Stylized facts

- Public traded non-financial and non-utility US firms with long-term credit rating. (Source: Compustat)
- 1142 rated firms in 1981-2017 (annual).

Secured debt = 'mortgage and other secured debt' Unsecured debt = 'long-term debt + total current debt' Secured debt

Leverage Ratios Across Quality Distribution			
	Leverage		Leverage
AA and above	1.53	B- and below	1.95
BBB and above	1.62	CCC and below	2.13
BBB- and above	1.65	CC and below	2.31

Corr (Y, Debt)	Rated Firms	All Obs.	Model
Secured Debt	0.06	0.15	0.09
Unsecured Debt	0.48	0.50	0.64

Model: Credit Contracts

- We embed heterogeneous firms and secured \& unsecured debt in a RBC model.
- Firm $j \in[0,1]$ has return on capital $\omega_{j t} R_{t}^{K}$.
- $\log \left(\omega_{j t}\right) \sim N\left(-0.5 \sigma_{t-1}^{2}, \sigma_{t-1}^{2}\right)$, with $E\left(\omega_{j t}\right)=1$
- Each firm carries a publicly observed label $i \in[G, B]$.
- A G firm can borrow both secured and unsecured debt (In eqm., G firms only borrow unsecured debt.)
- A B firm can only borrow secured debt.

Secured Debt

- Define $\bar{\omega}_{j t}^{B}$. A B firm can repay if $\omega_{j t} \geq \bar{\omega}_{j t}^{B}$

	$\omega_{j t} \leq \bar{\omega}_{j t}^{B}$	$\omega_{j t}>\bar{\omega}_{j t}^{B}$
B firm	Default and bankrupt.	Repay loan. Keep profit.
Lender	Get liquidation value of the firm.	Receive repayment.

Unsecured Debt

- Define $\bar{\omega}_{j t}^{G} . \mathrm{A}$ G firm can repay if $\omega_{j t} \geq \bar{\omega}_{j t}^{G}$
- A G firm chooses to repay when $\omega_{j t} \geq \widetilde{\omega}_{i t}^{G}$

	$\omega_{j t} \leq \widetilde{\omega}_{j t}^{G}$	$\omega_{j t}>\widetilde{\omega}_{j t}^{G}$
G firm	Default: With $P r=\zeta$, keep assets and becomes B firm; With $\operatorname{Pr}=(1-\zeta)$, gets nothing.	Repay loan. Keep profit.
Lender	Gets zero return.	Receive repayment.

Strategic default
default
repayment

The Optimal Contract

- Each firm maximizes its continuation value subject to lenders' participation constraint (PC)
- Value of a firm is given by $V_{t}^{i}\left(N_{j t}^{i}\right)=\lambda_{t}^{i} N_{j t}^{i}$, for $i \in\{G, B\}$, where $\lambda_{t}^{G}>\lambda_{t}^{B}>1$.
- All $i \in\{G, B\}$ firms choose same leverage, ϕ_{t}^{i}
- All G firms choose same default strategy $\xi_{t} \widetilde{\omega}_{t}^{G}=\bar{\omega}_{t}^{G}$, where $\xi_{t}<1$ and $\xi_{t}^{\prime}\left(\lambda_{t}^{G} / \lambda_{t}^{B}\right)>0$.
- Secured debt borrowers worry less about downsid risks, so B firms' ${ }^{\circ} O C \rho^{B}$ is less steep than G firms
- Secured debt lenders worry less about downside risk too, so B firms' PC is steeper than G firm's PC.
- So, for a given R^{K}, B firms have higher leverage

- Given relative slopes, a bad shock increases ϕ^{B} more.
- Debt is increasing in net worth and leverage $\left(B_{t}=\left(\phi_{t}-1\right) N_{t}\right)$, so secured debt is less procyclical

Calibration

Annual frequency
Financial market SS targets:
(a) $R^{K} / R=2 \%$, (b) $B^{G} / B=0.75$, (c) $\phi^{B}=2.4$, (d) $\phi^{G}=1.5$

Parameter Value Meaning

θ	0.87	Firm survival probability

| K | 0.017 | Initial monitoring cost for secured debt |
| :--- | :--- | :--- | :--- | | μ | 0.2 | Liquidation costs |
| :---: | :---: | :---: |

ζ	0.388	Debt restructuring success rate
ζ	0.257	

ζ	0.388	Debt restructuring success rate
$\bar{\sigma}$	0.257	Std. dev of idiosyncratic shock

γ	0.068	Firm initial transfer

TFP shocks $\left(A_{t}\right): \rho_{A}=0.56, s_{A}=0.023$
Volatility shocks $\left(\sigma_{t}\right): \rho_{\sigma}=0.85, s_{\sigma}=0.026$

Results

TFP Shock

Conclusions

- We document stylized facts about corporate firms debt structure
- We build a model with heterogeneous debt structure, and it matches key stylized facts.
- Dynamics of unsecured debt are important in understanding business cycles

