Set Identified Dynamic Economies and Robustness to Misspecification

Andreas Tryphonides

Motivation

- Frictions are an integral part of dynamic equilibrium models
- Nevertheless, the selection and specification of the relevant mechanisms involves arbitrary assumptions. Should we care?
- Different mechanisms M_i imply a different mapping from policy to outcomes:

$$\mathbf{M_i}: (\mathcal{X}, \mathsf{Policy}) \to \mathcal{Y}$$

ullet Hard to distinguish across M_i 's with standard macroeconomic data and methods

Highlights of our Approach

- We propose a methodology that is robust to misspecification and utilizes survey information
- Robustness: Economy with frictions as a family of perturbations to the frictionless economy that are not uniquely pinned down
- For any of those perturbations, unique moment inequalities are satisfied
- Set identification
- We further constrain the admissible models by using qualitative surveys: **Distributional** information, important for heterogeneous agent economies
- We illustrate how one can use the set of identified economies to do inference about a complete model

Partial Equilibrium Example: Liquidity Constraints

Consumption - Savings decision of household i:

$$\max_{\{c_{i,t}\}_{1}^{\infty}} \mathbb{E}_{0} \sum_{t=1}^{\infty} \beta^{t} \frac{c_{i,t}^{1-\omega} - 1}{1-\omega}$$
s.t. $y_{i,t} = s_{i,t} + c_{i,t}$

$$w_{i,t+1} = Rw_{i,t} + s_{i,t} \ge 0$$

Euler equation

$$\Delta c_{i,t+1} = ((\beta(1+r))^{\frac{1}{\omega}} - 1)c_{i,t} + \epsilon_{i,t+1} + \lambda_{i,t+1}$$

where

$$\mathbb{E}_t \lambda_{i,t+1} \ge 0$$

Implied bound on risk aversion

$$\omega < \frac{\|\log(\beta(1+r))\|}{\log \mathbb{E}y_{i,t}c_{i,t} - \log\left(\mathbb{E}y_{i,t}c_{i,t} - \|\mathbb{E}y_{i,t}\Delta c_{i,t+1}\|\right)}$$

- Consistent with many mechanisms b(.) such that $w_{i,t+1} \geq -b(w_{i,t},y_{i,t})$
- Intuition: High $\mathbb{E} y_{i,t} \Delta c_{i,t+1} \leftrightarrow \text{Low } \bar{\omega} \leftrightarrow \text{Agent not insured enough...}$
- ullet $\mathbb{E}\lambda_{i,t+1}$ measures average distortions in consumption growth
- Non trivial function of parameters and potentially wide
- Can we do better?

Why Qualitative Survey Data is Useful

- Suppose that we also ask whether the household has (or expects to have) any financial constraints.
- This determines whether $\lambda_{i,t} > 0$ and is model free!
- It can be shown that the following quantile restriction holds, for $\tilde{\mu} := (\beta(1+r))^{\frac{1}{\omega}} 1$:

$$\mathbb{P}_{t}(\Delta c_{i,t+1} < u) \geq \Phi_{0,\sigma_{\epsilon}^{2}}(u - \tilde{\mu}c_{i,t})\mathbb{P}_{t}(\lambda_{i,t+1} = 0) + \Phi_{0,\sigma_{\epsilon}^{2}}(u - \tilde{\mu}_{ols}c_{i,t})\mathbb{P}_{t}(\lambda_{i,t+1} > 0)$$

- As long as $\mathbb{P}_t(\lambda_{i,t+1} > 0) \in (0,1)$, then the set of admissible models shrinks
- Intuition: Constraints are only occasionally binding...
- Mechanisms that could not be rejected using consumption data can now be discarded

Extension to General Equilibrium

• For $\lambda_t := \int \lambda_{i,t} d\Lambda_t(i)$,

$$\mathbb{E}_t \lambda_{t+1} \ge 0$$

where $\Lambda_t(i)$ is the distribution of the agents

Internal Consistency

• We provide a representation result that translates partial to general equilibrium distortions

• We can therefore directly work with existing solution methods!

Aggregated Survey Data

- Survey based restriction changes:
- We observe **proportions** (\hat{B}_t) of agents that face frictions
- Condition for informativeness: $\hat{B}_t \in (0,1)$
- Do these types of surveys exist?
- Yes! For example, Business and Consumer Survey by the European Commission

Testing Parametric Models of Frictions

- A complete model identifies particular distortions, $\mathbb{E}\lambda_t^{CM}(\Theta)$, which should lie within the robust set estimate, $\mathbb{E}\lambda_t^{IM}(\Theta)$
- ullet Equilibrium models which impose strong cross equation restrictions may predict distortions which are not in accordance with $\mathbb{E}\lambda_t^{IM}(\Theta)$
- We propose a statistic that tests the distance of $\mathbb{E}\lambda_t^{CM}(\Theta)$ to $\mathbb{E}\lambda_t^{IM}(\Theta)$:

$$\mathcal{W}_t = \left(\sqrt{t} \inf_{\lambda_{IM} \in \lambda(\hat{\Theta}_{IM})} ||\mathcal{V}^{-\frac{1}{2}}(\lambda_{IM} - \lambda_{CM})||\right)^2$$

We prove its consistency and power and that Bootstrap works

Application to Firm Financial Frictions in Spain

- We investigate the adequacy of the S.O.E version of the Smets and Wouters (2007) model augmented with the financial accelerator of Bernanke, Gertler and Gilchrist (1999)
- Idiosyncratic shock to return on capital for each firm and costly state verification: (Aggregate) External Finance premium:

$$\mathbb{E}_t R_{t+1}^k = -\chi_{rp}(N_t - Q_t - k_t) + r_t - \mathbb{E}_t \pi_{t+1}$$

- Endogenous and Exogenous collateral constraints imply an aggregate capital adjustment constraint $\psi\left(\frac{I_t}{K_t}\right)$ (Wang and Wen (2012))
- We show that this implies negative distortions to investment and output
- We thus use $\mathbb{E}_t(X_{t+1}-X_{t+1}^f)\leq 0$ where $X:=\{Y,I,C,H\}$ and X_{t+1}^f the frictionless model prediction
- These restrictions also accommodate consumer liquidity constraints as in the example

Empirical Results

CM: SW-BGG model and IM: Robust (Incomplete) Model

