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Introduction

Modern economics is based on dynamic general equilibrium theory

⇒ Possibility of indeterminacy under realistic parameter values

How to think of indeterminacy?

Consider an infinite time horizon economy with a unique steady state

If deterministic → multiple equilibrium paths

If stochastic → multiple adjustment paths in response to fundamental
shocks
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⇒ Possibility of indeterminacy under realistic parameter values

How to think of indeterminacy?

Consider an infinite time horizon economy with a unique steady state

If deterministic → multiple equilibrium paths

If stochastic → multiple adjustment paths in response to fundamental
shocks

Renewed interest of empirical and theoretical macro literature in testing
for indeterminacy in rational expectations models.

⇒ We propose a novel approach to deal with the problem of
indeterminacy in Linear Rational Expectations models
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Testing for indeterminacy: Bayesian approach

Common practice to empirically test for determinacy:

1 Estimate model under determinacy and indeterminacy, separately;

2 Compare the corresponding marginal data densities;

3 Draw inference about (in)determinacy from the highest marginal data
density.

Limitations:

→ The researcher estimates the same model in two regions of the
parameter space (not two structurally different models);

→ The conventional approach is harder to implement if the region of
determinacy is unknown (e.g. Taylor principle).

→ Coding on the side of the researcher is often required (estimation
under indeterminacy is usually not part of standard packages).
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Contribution

We propose an augmented representation of a LRE model which:

Estimates a LRE model over the entire parameter space;

→ Posterior distributions could lie in both regions of the parameter space;
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Contribution

We propose an augmented representation of a LRE model which:

Estimates a LRE model over the entire parameter space;

→ Posterior distributions could lie in both regions of the parameter space;

Is applicable also when the region of determinacy is unknown;

Is implementable in standard software packages.

Delivers solutions equivalent to:

standard solutions under determinacy (Sims, 2002);

the solutions of Lubik and Schorfheide (2003) and Farmer et al. (2015)
under indeterminacy;
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Building the intuition

Consider the univariate LRE model from Lubik and Schorfheide (2004)

yt =
1

θ
Et(yt+1) + εt , εt ∼ iidN(0, σ2), θ ∈ [0, 2].

Define ξt ≡ Et(yt+1) and ηt ≡ yt − ξt−1.

Rewrite LRE model as

ξt = θξt−1 − θεt + θηt
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BK condition in original model

Consider the LRE model
ξt = θξt−1 − θεt + θηt (1)

BK condition: determinacy if number of unstable roots equals number of
expectational variables.

Let

p be number of expectational variables → p = 1

n be number of unstable roots of the system

⇒ Degrees of indeterminacy: m ≡ p − n

Solution:

Determinacy if θ > 1: ⇒ m = 0 ⇒ {ηt = εt , ξ0 = 0, yt = εt}

Indeterminacy if θ < 1: ⇒ m = 1 ⇒ {yt = θyt−1 − θεt + ηt}

Bianchi (Cornell) and Nicoló (UCLA) April 6, 2016 5 / 15



BK condition in augmented model

Our approach proposes to solve the augmented system:

ξt = θξt−1 − θεt + θηt ,

ωt = αωt−1 − νt + ηt . (2)

Table: Blanchard-Kahn condition in the augmented representation

α Unstable Roots B-K condition in Solution

augmented model (2)

Determinacy θ > 1

in original model (1)

< 1 1 Satisfied {yt = "t, !t = α!t−1 − νt + "t}
> 1 2 Not satisfied -

Indeterminacy θ < 1

in original model (1)

< 1 0 Not satisfied -

> 1 1 Satisfied {yt = θyt−1 − θ"t + ηt, !t = 0}

Note: The Table presents the regions of the parameter space for which the augmented representation

in (??) satisfies the Blanchard-Kahn condition and shows the mapping to the original model in (??).
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Applying our method

1 Apply our methodology to New-Keynesian model in Lubik and
Schorfheide (2004).

2 We run two simulations of the model, under determinacy and
indeterminacy respectively.

3 We estimate the augmented representation when the region of
determinacy is assumed to be unknown.

4 We show that the posterior estimates recover the true parameters
used for the simulations.
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The New-Keynesian model in LS

Dynamic IS curve

xt = Et (xt+1)− τ (Rt − Et (πt+1)) + gt

NKPC
πt = βEt (πt+1) + κ (xt − zt)

Monetary policy

Rt = ρRRt−1 + (1− ρR) [ψ1πt + ψ2 (xt − zt)] + εR,t

Rational expectation forecast errors

η1,t = xt − Et−1 (xt) η2,t = πt − Et−1 (πt)
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Conditions for determinacy
Let

p be number of expectational variables → p = 2

n be number of unstable roots of the system

⇒ Degrees of indeterminacy: m ≡ p − n

Define ψ∗ ≡ ψ1 + (1−β)
κ ψ2.

Taylor principle and determinacy:

If |ψ∗| > 1 ⇒ m = 0 ⇒ Sims (2002)

If |ψ∗| < 1 ⇒ m = 1 ⇒ Farmer et al. (2015)
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Our methodology

We propose to append m = 1 autoregressive process

ωt = αωt−1 + νt − η2,t

For intuition, consider α ≡ 1/|ψ∗|

Under determinacy |ψ∗| > 1

→ We introduce m stable roots (α < 1) and BK conditions are satisfied

→ Our solution equivalent to Sims (2002)

Under indeterminacy |ψ∗| < 1 → m = p − n = 1

→ We introduce m unstable roots (α > 1) and BK conditions are satisfied

→ Our solution equivalent to Farmer et al. (2015)
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Estimation for unknown region of determinacy

Suppose the researcher does not know the region of determinacy.

Our methodology still appends m = 1 autoregressive process,

ωt = αωt−1 + νt − η2,t .

However, we cannot set α ≡ 1/|ψ∗|.

⇒ We assume uniform prior distribution: α ∼ U[0, 2]

→ Equal probability of drawing α from [0, 1] as well as from (1, 2].

⇒ We estimate the augmented representation using both simulated time
series and recover the true parameters.
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Posterior distribution of α
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(a) Determinacy
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(b) Indeterminacy

Note: the grey line represents the prior distribution of the parameter α.
The black line is the posterior distribution.
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Posterior estimates (determinacy)

true parameter values and the (mean of the) posterior distributions indicate that the

condition for determinacy is satisfied, that is | ∗| > 1. Also, as mentioned above, note

that more than 90% of the mass of the posterior distribution of α lies in the interval (0, 1).

Table 7: Posterior estimates, simulation under determinacy

True values Posterior estimates

Mean 90% probability interval

α - 0.51 [0.11,0.99]

 1 2.1 1.92 [1.63,2.20]

 2 0.17 0.37 [0.06,0.67]

ρR 0.60 0.61 [0.57,0.65]

π∗ 4.28 4.40 [4.25,4.56]

r∗ 1.13 1.29 [1.08,1.50]

κ 0.77 0.73 [0.37,1.06]

τ−1 1.45 1.36 [1.07,1.67]

ρg 0.68 0.68 [0.62,0.73]

ρz 0.82 0.80 [0.76,0.87]

σR 0.23 0.22 [0.20,0.24]

σg 0.27 0.28 [0.23,0.33]

σz 1.13 1.12 [1.01,1.23]

ρgz 0.14 0.04 [-0.18,0.25]

ρgR 0 0.09 [-0.08,0.28]

ρzR 0 0.01 [-0.16,0.18]

The estimation of the augmented representation using simulated data under indeterminacy

delivers a mirrored posterior distribution for the parameter α (Figure 4). In this case, more

than 90% of the probability mass is distributed over the interval (1, 2) and the posterior

distribution of α closely resembles a uniform distribution over the same interval due to its

non-identifiability.

26
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Posterior estimates (determinacy)

True values Posterior estimates
Mean 90% probability interval

�R 0.23 0.22 [0.21,0.24]

�g 0.27 0.28 [0.23,0.33]

�z 1.13 1.12 [1.02,1.22]

⇢gz 0.14 0.02 [-0.12,0.15]

⇢gR 0 0.06 [-0.05,0.17]

⇢zR 0 0.02 [-0.08,0.14]
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Conclusions

We provide a new method to deal with indeterminacy in LRE models.

Our augmented representation ensures to estimate LRE models over
the entire parameter space.

Our method is applicable also when the region of determinacy is
unknown.

It is implementable in standard software packages.
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