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Does contagion matters?

“...network effects have important lessons for understanding the
economic recession”

Figure: Cumulative sum of contagious European banks’ total assets in 2007 and
2010. Source: Toivanen (2013).
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Does contagion matters? (Cont)

Figure: Average 2010 crisis propagation in European banking network. Source:
Toivanen (2013).
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Real banking network v.s. theoretical banking networks

Figure: Global banking network in year
2006, source Houston 2015.

Figure: Implied banking networks in
DSGE literature (source: Allena &
Gale 2000).
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Research question & selected literature

Research Question: how contagion spreads between banks? Can we model it? Can we
integrate a contagion mechanism into a DSGE model and keep track of how default
cascades evolve along the cycle?

Related Literature:

Gai and Kapadia (2010): agent-based simulated banking network. They keep track of the

evolution of cascade size after different shocks.

Acemoglu et al. (2014): they built a micro model of banking with network. They

compared ring and complete network finding evidences of phase transition.

Blasques et al. (2015): they simulated the interbank market, with banks as nodes of a

network. Market activity is affected negatively by credit shocks and positively by larger

rates corridors.

Capponi and Chen (2015): explore how to mitigate risk in a core-periphery and random

(Poisson) banking network.

Coherent empirical literature on the structure of interbank network: Boss et al. (2004),
Caldarelli et al. (2006), Somaraki (2007), Newman (2009), Cohen-Cole et al. (2011).
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Outline

• Construction of a model to describe diffusion in random networks

• Analyze the properties of the network described

• Integrate the network model into a standard DSGE model with
frictions

• Analyze how cascades evolve along the economic cycle

6 / 36



Introduction The Network model Simulations DSGE model IRFs Leaning agains the network Appendix

Main results

• I have developed a general framework that can be applied to any macro model.

• With this framework it is possible to analyze the probability of a cascade and
its size.

• I constructed the network using a power law distribution following empirical
evidence, in contrast with previous attempts that use more simplistic
assumptions (but the framework can be adapted to any distribution...).

• Robuts-yet-fragile properties that highlight a policy trade off during crisis.

• Probabilities and sizes of cascades evolve along the business cycle and are
affected by real and financial shocks. Exists a “divine coincidence” with
government spending shocks, while there is not for monetary policy.

• Next extension: estimate the key network parameters, without the need of
restricted data.
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What is a cascade?

Figure: Diffusion on a network after an initial shock. The red triangular is the
”starter” (called initial seed) of the cascade. Circles are vulnerable nodes, while
squares are resilient nodes. Blue nodes are part of the cascade (”infected”)
while green nodes are not. 8 / 36
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A model for cascades

Definition. Assume that nodes are in state 0 but can turn to state 1. We
define a global cascade as a cascade that occupies a finite fraction of the
network, with nodes shifted from state 0 to 1.

Global cascades are triggered by one node (called initial seed) that moves
exogenously from state 0 to 1. The initial seed is able to spread to its
neighbours that can shift as well or not. Only if at least one of the
neighbours moves to state 1 the initial seed can spread.

Definition. A node is vulnerable if it turns to state 1 if at least a fraction φ
of its k neighbours is in state 1.

If there are no short cycles, the initial seed can grow if and only if the
initial seed is surrounded by at least one immediate neighbour with
threshold φ ≤ 1

k or equivalently a degree k = 1
φ .
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Moment generating functions approach

Borrowing from physics (Newman et al. (2001), Watts (2002)), we can
describe a network trough a moment generating function (MGF)
approach. Simply consider a random graph V with n nodes and d edges.
We can define pk as the probability of one node to have exactly k
neighbours and assume its distribution to be correctly normalized.
We can than build a moment generating function for the entire graph as:

M0 (x) ≡
∞

∑
k=0

pkx
k (1)

each moment of the distribution is simply the kth derivative of
M0 (x) | x = 1. With the average degree of the network z defined as:

M ′0 (1) = z =
∞

∑
k=0

kpk (2)

in the case of a Poisson network pk = zke−z

k ! .
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The cascade into equations

Assume that each node has its how value of φ with φ drawn at random from a

distribution such as
∫ 1

0 f (φ) dφ = 1.
We can define the moment generating function of vulnerable vertices from (1)
as:

G0 (x) =
∞

∑
k=0

ρkpkx
k (3)

ρk =

{
1 if k = 0

P
(
k ≤ 1

φ

)
if k 6= 0

(4)

from this it is possible to characterize the distribution of vulnerable nodes and
to compute probability and size of cascades.

For example we can compute: Math.

• The vulnerable fraction of the population: Pv = G0 (1)
• The average degree of vulnerable vertices: zv = G ′0 (1)
• The average degree of vertices v neighbours to an initial vertex u G1 (x).

This quantity is crucial in determining the spread of any initial seed. 11 / 36
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Computing the cascade size
Define qk the probability of a vertex being part of a vulnerable cluster and rk the
probability that one of its neighbours belongs to the cluster of vulnerable vertices, with
the corresponding MGFs H0 (x) and H1 (x).
From the properties of generating functions follows that H0 (x) and H1 (x) satisfy the
following self consistency conditions:

H1 (x) = [1− G1 (1)] + xG1 (H1 (x)) (5)

H0 (x) = [1− G0 (1)] + xG0 (H1 (x)) (6)

where the first term is the probability that the vertex chosen is not vulnerable and the
second term the size distribution of vulnerable clusters attached to a vulnerable vertex.
With (some!) algebra, we can compute H ′0 (1) =‖ n ‖ the average vulnerable cluster size
as:

‖ n ‖= Pv +
(zv )2

z − G ′′0 (1)
(7)

with [z − G ′′0 (x)] the (to some extent transcendental) phase transition condition.

Some algebra. Self consistency.
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The choice of pk , φ and f (φ)

The choice of the appropriate distribution is not trivial, because it
captures some key characteristics of the underlying network. However
this comes at the price of higher computational burden.

I will use a power law distribution of the form: pk = Ak−γ.
This distribution captures two key features of the interbank market: i)
tales are not irrelevant; ii) there are signs of preferential attachment.
Additionallly it is consistent with the empirical evidence.

φ is the number of counterparts that can default without leading to a
default of the bank itself. It is possible to prove that φ = V e

I with V e

the amount of dollars a bank can make fire-saling its assets and I the
total interbank loans of each bank.
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Probability and size of a cascade

Figure: Cascade probability. Figure: Cascade size.
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Public policies: ”immunization”

Figure: Cascade probability. Figure: Cascade size.
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The model
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A complete DSGE model

The model I propose is an extension of Gertler & Karadi (2011),
modified to incorporate banking sector on the line of Gerali et al. (2010)
and Gambacorta & Signoretti (2013).

There are: households with habits, monopolistic competition and Calvo
pricing. Firms finance each period’s capital and investments with loans
from the banking sector.
Following the assumption made by Acemoglu et al. (2014), each bank
operates on the interbank market to loan and borrow funds using capital
accumulated during previous periods. In each period banks are associated
to a random number of counterparts, according to the network’s laws.

Operatively, each bank is divided into a wholesale and a retail branch.
Wholesale branches operate on the interbank market while retail
branches extend loans to firms.
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The bank’s problem

The (consolidated) ballance sheet of a rapresentative bank is:

Assets Liabilities

Loans to Firms (B) Reserves (N)

Interbank Loans (I ) Deposits (D)

Interbank Loans (I )

The aggregate bank’s problem has the (well known) form:

Et (Vt) =
∞

∑
i=0

(1− θ) θiΛC
t,t+1+iNt+1+i s.t (8)

E (Vt) ≥ ΘBt (9)

the problem is solved considering also the peripheral decisions of the two
branches.
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Fire-sale threshold

The maximum amount of dollars that a bank can lose from its
counterparts without defaulting is given by:

ηtVt = −
RK
t Bt − RD

t Dt − RB
t Intt

RB
t

= V e
t (10)

with ηt ∼ U ∈ [0, 1] and being i.i.d. across banks and time. It is possible
to show that φ = Vt

Intt
leading to:

P

[
φ ≤ 1

k

]
= P

[
(V e

t = ηtVt)

It
≤ 1

k

]
= P

[
ηt ≤

It
kVt

]
(11)

Some algebra.
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Nesting the network structure

Also in this relatively simple case, the computing equations (3)-(7) is far
from trivial.
The power law exhibits fractal behavior and has not close form solution
for a large set of parameter values. In fact, equation (3) can be solved as:

Liγ (x)

ζ (γ)
(12)

with Liγ (x) being the γth polylogarithm of x (a fractal function used in
quantum statistics) and ζ (γ) the Riemann ζ function.
However, using the definition of integrals as limits of a Reinmann sum
and relying on the properties of the network under consideration, after
(some!) algebra, it is possible to redefine equation (3) as:

G0 (x) =
∫ I

1
ρkpkx

kdk | x = 1 (13)

Some algebra. Network equations.
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Standard results
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Probability of a cascade after shocks

Figure: Cascade probability after monetary policy, capital quality and bank’s
networth shocks.
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Probability of a cascade after shocks (cont)

Figure: Cascade probability after TFP, consumption preference and government
spending shocks.
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Size of a cascade after shocks

Figure: Cascade size after monetary policy, capital quality and bank’s networth
shocks.
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Size of a cascade after shocks (cont)

Figure: Cascade size after TFP, consumption preference and government
spending shocks.
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Leaning against the network

IRFs show that tightening can improve the system stability, so why the
central bank does not respond to financial variables? Assume the
augmented Taylor rule:

Rn
t = (1− ρ)

[
Rn + ψππt + ψy (Yt − Y ss) + kpv (Pv ,t − Pss

v )
]
+ ρRn

t−1 + eRt
(14)

kpv Int. Rate TFP Inflation Gov. Spending Preference Cap. Quality Banks’ Net Worth

Cummulative change in the contagion probability Pv in differences from the baseline
0.05 2.34 -0.07 0.15 0.00 0.04 -1.33 -0.11
0.10 2.91 -0.08 0.18 -0.01 0.04 -1.68 -0.20
0.15 3.18 -0.08 0.20 -0.01 0.04 -1.87 -0.29
0.20 3.34 -0.08 0.21 -0.01 0.04 -2.02 -0.41
0.25 3.45 -0.07 0.22 -0.01 0.03 -2.17 -0.55

Ratio between the variances of Y and π under a specific rule and the baseline
Y π Y π Y π Y π Y π Y π Y π

0.05 0.11 0.06 0.61 1.08 0.11 0.06 1.02 0.74 1.47 2.68 0.07 6.03 0.09 46.13
0.10 0.05 0.18 0.64 1.02 0.05 0.18 1.04 0.91 1.80 6.24 0.19 18.34 0.89 231.03
0.15 0.04 0.36 0.78 1.01 0.04 0.36 1.07 1.67 2.18 19.42 0.64 40.69 3.59 650.46
0.20 0.04 0.60 1.04 1.18 0.04 0.60 1.12 3.49 2.69 55.59 1.85 86.92 9.43 1509.48
0.25 0.06 1.00 1.51 1.76 0.06 1.00 1.18 7.61 3.49 151.39 4.97 196.47 22.26 3316.88
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Conclusions

• This framework is flexible to different model specifications, additional frictions, different
distributional assumptions. Can be extended to model other areas of the economy with
network effects (i.e. technology, news, innovation).

• Real and financial shocks have a significant impact on the probability of a cascade and on its
size.

• Financial shocks, as expected, have larger conseguences on the structure of the interbank
market than real shocks.

• There is a mild “divine coincidence” between public spending and financial stability.

• However, the same is not true for expansionary monetary policies. Central banks can reduce
volatility weakly targeting financial variables after real shocks, with limited losses in financial
stability. This does not hold for financial shocks

• Policy makers should try to avoid the “chaotic area” of the network distribution, the most
effective policy varies with the characteristics of the interbank market. Generally, targeting
the most connected institutions is preferable.

• Extensions: estimate the model to indentify γ. This will allow researcher to indentify that
parameter without the need of CB restricted data.
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Questions?

Thank you!
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Cascade equations

The first derivative of G0 (x) is immediate to compute as:

G ′0 (x) = ∑
k

kρkpkx
k−1

G1 (x) is the probability that a vertex a is second neighbour of a
vulnerable vertex. The probability of choosing a is proportional to kpk ,
therefore the corresponding generating function is:

G1 (x) =
∑k kρkpkx

k−1

∑k kpk

It is immediate that ∑k kρkpkx
k−1 = G ′0 (x). Recalling equation (2) it is

possible to simplify:

G1 (x) =
G ′0 (x)

z

Go back.
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Cascade size

By definition, the average vulnerable cluster size is the first derivative of
the MGF of vulnerable vertices. Derive equation (5) for its argument:

H ′1(x) = G1(H1(x)) + xG ′1(H1(x))H
′
1(x) =

G1(H1(x))

1− xG ′1(H1(x))

now derive equation (6):

H ′0(x) = G0(H1(x)) + xG ′0(H1(x))H
′
1(x)

combine the two to get:

H ′0(x) = G0(H1(x)) + xG ′0(H1(x))
G1(H1(x))

1− xG ′1(H1(x))

Go back.
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Cascade size (cont)

Recall that:

G1 (x) =
G ′0 (x)

z
and G ′1 (x) =

G ′′0 (x)

z

therefore it is possible to write H ′0 as:

H ′0 = G0(H1(x)) +
x [G ′0(H1(x))]2

z − G ′′0 (H1(x))

the average cluster size is given by H ′0 | x = 1 so the previous equation
becomes:

‖ n ‖= Pv +
(zv )2

z − G ′′0 (1)

Go back.
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Self consistency

Equation (5) must fulfill so called self consistency conditions.
Self-consistency (see Tarpey 1996) allows to approximate the distribution
of a random vector X by a random vector Y whose structure is less
complex without significant loss of information. In particular we can
construct a self-consistent approximation of X dividing X into
subsamples and defining Y as a random variable with values the means
of each subset.

Definition

Consider two random vectors X and Y . Y is self-consistent for X if:

E (X | Y ) = Y

Go back.
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Self consistency (cont)

Lemma

Let Xn be a sequence of independent random variable with 0 mean and define Sn = ∑n
i=0 Xi .

Then:
E (Sn+k | Sn) = Sn + E (Xn+1 + .... + Xn+k | Sn)

E (Sn+k | Sn) = Sn + E (Xn+1 + .... + Xn+k)

E (Sn+k | Sn) = Sn

Thus Sn is self-consistent for Sn+k , k > 0. This holds more generally if Snn>1 is a martingale
process.

Notice that the exploration of a social network is a martingale process (i.e. the expectation of
the next value in the sequence is equal to the present observed), in fact the after visiting node k ,
the exploration along any of its edges is ex-ante identical to the original situation (in
expectations).

Go back.
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Nesting the network structure

Recall the definition of integral as limit of a Riemann sum:∫ b

a
f (x) dx = lim

n→∞

b− a

n

n

∑
i=1

f (xi )

with xi = a+ i b−an . With the MGF for the entire graph given by given by

∑k f (k).
With siple algebra it is possible to compute a = 0 and b = n, the
maximum number of edges in the graph.
Given the system under consideration, therefore, one can easily obtain:

G0 (x) =
∫ I

1
ρkpkx

kdk

with I defining the maximum number of edges that are obtainable as if
each bank loans one unit of interbank funds to a differente counterpart.
Clearly with ρk = P

[
φ ≤ 1

k

]
and φ a function of Vt , the capital buffer of

banks.
Go back. 34 / 36



Introduction The Network model Simulations DSGE model IRFs Leaning agains the network Appendix

Full network system

From equation (3) we can have that:

G0 (1) =
∫ It

1
ΩtAk

−γxkdk

with Ωt ≡ P
[
ηt ≤ It

kVt

]
. It is now easy to derive the system to get:

z =
∫ It

1
Lk−γxkdk

G ′0 (x) =
∫ It

1
ΩtLk

−γkxk−1dk

G ′′0 (x) =
∫ It

1
ΩtLk

−γk (k − 1) xk−2dk

Go back.
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Fire-sale threshold

Define φ as the fraction of neighbours of a bank that can default without
leading to the default of the bank itself.

I follows that i = It
k is the fraction of funds lend to each counterpart.

The maximum number of clients that may default without threatening
the bank itself is:

F =
V

i
Recalling the definition of φ:

φ =
F

k
→ V

i

1

k
→ φ =

V

k

k

Int
=

V

Int
Go back.
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