# THE ZERO LOWER BOUND AND ESTIMATION ACCURACY<sup>1</sup>

Tyler Atkinson, Dallas Fed
Alex Richter, Dallas Fed
Nate Throckmorton, William & Mary

MMCN June 13, 2019

<sup>&</sup>lt;sup>1</sup>The views expressed in these slides are our own and do not necessarily reflect the views of the Federal Reserve Bank of Dallas or the Federal Reserve System.

# **MOTIVATION**

- Estimating linear DSGE models is common
  - Fast and easy to implement
  - Used by many central banks
- Recent ZLB period calls into question linear methods
  - Creates a kink in the monetary policy rule
  - Linear methods ignore the effects of the ZLB
  - Leads to inaccurate estimates
  - Lower natural rate makes ZLB events more likely

#### **ALTERNATIVE METHODS**

- Estimate fully nonlinear model (NL-PF)
  - Uses a projection method and particle filter
  - Most comprehensive treatment of the ZLB
  - Numerically very intensive
- 2. Estimate piecewise linear model (OB-IF)
  - Uses OccBin and an inversion filter
  - Almost as fast as linear methods
  - Captures the kink in the monetary policy rule
  - Ignores precautionary savings effects of the ZLB

#### **CONTRIBUTION**

- Compare the accuracy of the two methods
- Generate datasets from a medium-scale nonlinear model
- Generate many datasets with either:
  - No ZLB events
  - A single ZLB event with a fixed duration
- For each dataset, estimate a small-scale model
- Differences between the models creates misspecification
- · Accounts for the reality that all models are misspecified



# **KEY FINDINGS**

- NL-PF and OB-IF produce similar parameter estimates
- NL-PF predictions typically more accurate than OB-IF
  - Notional interest rate estimates
  - Expected ZLB duration
  - Probability of a 4+ quarter ZLB event
  - Forecasts of the policy rate
- Increase in accuracy is often small because the precautionary savings effects of the ZLB and the effects of other nonlinearities are weak in canonical models

#### DATA GENERATING PROCESS

- Familiar medium-scale New Keynesian model
- One-period nominal bond
- Elastic labor supply and sticky wages
- Habit persistence and variable capital utilization
- Quadratic investment adjustment costs
- Monopolistically competitive intermediate firms
- Rotemberg quadratic price adjustment costs
- Occasionally binding ZLB constraint
- Risk premium, growth, and interest rate shocks

#### **ESTIMATION METHODS**

Generate data by solving the nonlinear model

▶ Details

Datasets: 50 for each ZLB duration, 120 quarters



- Estimated small-scale model is the DGP without:
  - Capital accumulation
  - Sticky wages
- Random walk Metropolis-Hastings algorithm:
  - 1. Mode Search (5,000 draws): initial covariance matrix
  - 2. Initial MH (25,000 draws): update covariance matrix
  - 3. Final MH (50,000 draws): calculate posterior mean
- Priors: Centered around truth

▶ Details

 Observables: Output growth, inflation rate, and nominal interest rate



# SPEED TESTS

|                                        | NL-PF (16 Cores)          | OB-IF (1 Core)                                         | Lin-KF (1 Core)           |
|----------------------------------------|---------------------------|--------------------------------------------------------|---------------------------|
|                                        |                           | No ZLB Events                                          |                           |
| Seconds per draw                       | 6.7 $(6.1, 7.9)$          | 0.035 $(0.031, 0.040)$                                 | 0.002 $(0.002, 0.004)$    |
| Hours per dataset 148.8 (134.9, 176.5) |                           | $0.781 \\ (0.689, 0.889)$                              | $0.052 \\ (0.044, 0.089)$ |
|                                        | 30 (                      | Quarter ZLB Even                                       | ts                        |
| Seconds per draw                       | 8.4<br>(7.5, 9.5)         | 0.096 $(0.051, 0.135)$                                 | 0.002 $(0.001, 0.003)$    |
| Hours per dataset                      | $186.4 \\ (167.6, 210.7)$ | $\begin{array}{c} 2.137 \\ (1.133, 3.000) \end{array}$ | $0.049 \\ (0.022, 0.067)$ |

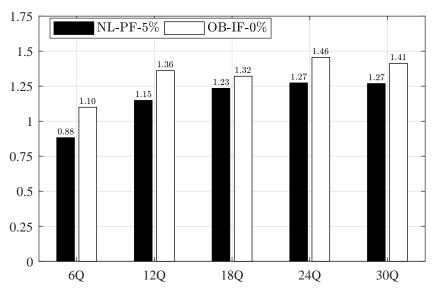
# PARAMETER ESTIMATES: NO ZLB EVENTS

| Ptr         | Truth | NL-PF-5%                                                           | OB-IF-0%                                                        | Lin-KF-5%                                                                |
|-------------|-------|--------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|
| $\varphi_p$ | 100   | $ \begin{array}{c} 151.1 \\ (134.2, 165.8) \\ [0.52] \end{array} $ | $142.6\atop \substack{(121.1,157.3)\\[0.44]}$                   | $151.4 \\ (134.0, 165.7) \\ [0.52]$                                      |
| h           | 0.8   | $0.66 \\ (0.62, 0.70) \\ [0.18]$                                   | $0.64 \\ (0.61, 0.67) \\ [0.20]$                                | $0.66 \\ (0.62, 0.69) \\ [0.18]$                                         |
| $ ho_s$     | 0.8   |                                                                    |                                                                 | $\begin{array}{c} 0.76 \\ (0.72, 0.80) \\ [0.06] \end{array}$            |
| $ ho_i$     | 0.8   | $ \begin{array}{c} 0.79 \\ (0.75, 0.82) \\ [0.03] \end{array} $    | $0.76 \\ (0.71, 0.79) \\ [0.06]$                                | $0.79 \ (0.75, 0.82) \ [0.03]$                                           |
| $\sigma_z$  | 0.005 | $0.0032 \\ (0.0023, 0.0039) \\ [0.37]$                             | $0.0051 \\ (0.0044, 0.0058) \\ [0.09]$                          | $  \begin{array}{c} 0.0032 \\  (0.0023, 0.0039) \\  [0.36] \end{array} $ |
| $\sigma_s$  | 0.005 | $0.0052 \\ (0.0040, 0.0066) \\ [0.15]$                             | $0.0051 \\ (0.0042, 0.0063) \\ [0.13]$                          | $0.0053 \\ (0.0040, 0.0067) \\ [0.15]$                                   |
| $\sigma_i$  | 0.002 | $0.0017 \atop (0.0014, 0.0020) \atop [0.17]$                       | $0.0020 \atop (0.0018, 0.0023) \atop [0.08]$                    | $\begin{array}{c} 0.0017 \\ (0.0015, 0.0020) \\ [0.16] \end{array}$      |
| $\phi_\pi$  | 2.0   | $ \begin{array}{c} 2.04 \\ (1.88, 2.19) \\ [0.06] \end{array} $    | $ \begin{array}{c} 2.01 \\ (1.84, 2.16) \\ [0.06] \end{array} $ | (1.88, 2.20) $[0.06]$                                                    |
| $\phi_y$    | 0.5   |                                                                    | $0.32 \\ (0.17, 0.48) \\ [0.41]$                                | $0.35 \\ (0.22, 0.54) \\ [0.35]$                                         |
| Σ           |       | [1.90]                                                             | [1.53]                                                          | [1.88]                                                                   |

ATKINSON, RICHTER AND THROCKMORTON: THE ZERO LOWER BOUND AND ESTIMATION ACCURACY

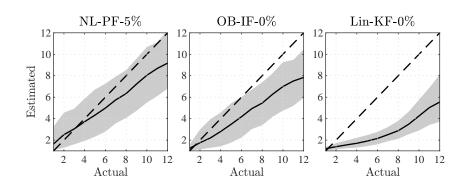
# PARAMETER ESTIMATES: 30Q ZLB EVENTS

| Ptr          | Truth | NL-PF-5%                                                      | OB-IF-0%                                                                | Lin-KF-5%                                                        |
|--------------|-------|---------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------|
| $\varphi_p$  | 100   | 188.4<br>(174.7, 202.7)<br>[0.89]                             | $_{\substack{(169.2, 198.5)\\[0.84]}}^{183.4}$                          | $\begin{array}{c} 191.6 \\ (175.3, 204.1) \\ [0.92] \end{array}$ |
| h            | 0.8   | $0.68 \\ (0.64, 0.71) \\ [0.16]$                              | $ \begin{array}{c} 0.63 \\ 0.63 \\ (0.60, 0.67) \\ [0.21] \end{array} $ | $ \begin{array}{c} 0.67 \\ (0.63, 0.70) \\ [0.17] \end{array} $  |
| $ ho_s$      | 0.8   | 0.81<br>(0.78, 0.84)<br>[0.03]                                | $ \begin{array}{c} 0.82\\ (0.79, 0.86)\\ [0.04] \end{array} $           | $0.82 \\ (0.78, 0.86) \\ [0.04]$                                 |
| $ ho_i$      | 0.8   | $ \begin{array}{c} 0.80\\ (0.75, 0.84)\\ [0.03] \end{array} $ | $ \begin{array}{c} 0.77 \\ (0.73, 0.81) \\ [0.05] \end{array} $         | $ \begin{array}{c} 0.84 \\ (0.80, 0.88) \\ [0.06] \end{array} $  |
| $\sigma_z$   | 0.005 | $0.0040 \\ (0.0030, 0.0052) \\ [0.23]$                        | $0.0059 \ (0.0050, 0.0069) \ [0.22]$                                    | $0.0043 \\ (0.0030, 0.0057) \\ [0.20]$                           |
| $\sigma_s$   | 0.005 | $0.0050 \\ (0.0039, 0.0062) \\ [0.13]$                        | $0.0046 \\ (0.0036, 0.0056) \\ [0.15]$                                  | $0.0047 \\ (0.0037, 0.0061) \\ [0.15]$                           |
| $\sigma_i$   | 0.002 | $0.0015 \\ (0.0013, 0.0019) \\ [0.24]$                        | $0.0020 \\ (0.0019, 0.0024) \\ [0.09]$                                  | $0.0016 \\ (0.0014, 0.0019) \\ [0.20]$                           |
| $\phi_{\pi}$ | 2.0   | $\begin{array}{c} 2.13 \\ (1.94, 2.31) \\ [0.09] \end{array}$ | $\begin{array}{c} 1.96 \\ (1.77, 2.14) \\ [0.06] \end{array}$           | $\begin{array}{c} 1.73 \\ (1.52, 1.91) \\ [0.15] \end{array}$    |
| $\phi_y$     | 0.5   |                                                               |                                                                         |                                                                  |
| Σ            |       | [2.08]                                                        | [1.91]                                                                  | [2.28]                                                           |

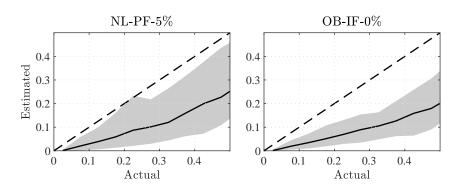

# LOWER MISSPECIFICATION: NO ZLB EVENTS

| Ptr          | Truth | OB-IF-0%                                                                        | OB-IF-0%-Sticky Wages                                           | OB-IF-0%-DGP                                                      |
|--------------|-------|---------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------|
| $\varphi_p$  | 100   | $142.6 \atop \substack{(121.1,\ 157.3) \\ [0.44]}$                              | $100.1 \atop (76.9, 119.6) \atop [0.13]$                        | $ \begin{array}{c} 101.4 \\ (80.1, 120.7) \\ [0.12] \end{array} $ |
| h            | 0.8   | $0.64 \\ (0.61, 0.67) \\ [0.20]$                                                | $0.82 \\ (0.78, 0.86) \\ [0.04]$                                | $ \begin{array}{c} 0.81 \\ (0.75, 0.85) \\ [0.04] \end{array} $   |
| $ ho_s$      | 0.8   |                                                                                 |                                                                 | $ \begin{array}{c} 0.80\\ (0.76, 0.85)\\ [0.03] \end{array} $     |
| $ ho_i$      | 0.8   | $ \begin{array}{c} 0.76 \\ (0.71, 0.79) \\ [0.06] \end{array} $                 |                                                                 | $ \begin{array}{c} 0.79 \\ (0.75, 0.82) \\ [0.03] \end{array} $   |
| $\sigma_z$   | 0.005 | $  \begin{array}{c} 0.0051 \\  (0.0044, 0.0058) \\  \hline [0.09] \end{array} $ | $0.0038 \\ (0.0031, 0.0044) \\ [0.24]$                          | $0.0047 \\ (0.0039, 0.0054) \\ [0.11]$                            |
| $\sigma_s$   | 0.005 | $0.0051 \\ (0.0042, 0.0063) \\ [0.13]$                                          |                                                                 | 0.0060<br>(0.0043, 0.0084)<br>[0.30]                              |
| $\sigma_i$   | 0.002 | $  \begin{array}{c} 0.0020 \\  (0.0018, 0.0023) \\  [0.08] \end{array} $        |                                                                 | $0.0020 \\ (0.0018, 0.0022) \\ [0.08]$                            |
| $\phi_{\pi}$ | 2.0   | $\begin{array}{c} 2.01 \\ (1.84, 2.16) \\ [0.06] \end{array}$                   | $ \begin{array}{c} 1.91 \\ (1.74, 2.04) \\ [0.07] \end{array} $ | $ \begin{array}{c} 1.92 \\ (1.72, 2.08) \\ [0.06] \end{array} $   |
| $\phi_y$     | 0.5   | $\begin{array}{c} 0.32 \\ (0.17, 0.48) \\ [0.41] \end{array}$                   |                                                                 | $  \begin{array}{c} 0.41 \\ (0.24, 0.57) \\ [0.26] \end{array} $  |
| Σ            |       | [1.53]                                                                          | [1.71]                                                          | [1.03]                                                            |

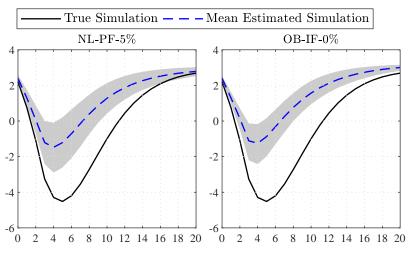
# LOWER MISSPECIFICATION: 30Q ZLB EVENTS


| Ptr          | Truth | OB-IF-0%                                                                 | OB-IF-0%-Sticky Wages                                           | OB-IF-0%-DGP                                                     |
|--------------|-------|--------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|
| $\varphi_p$  | 100   | $ \begin{array}{c} 183.4 \\ (169.2, 198.5) \\ [0.84] \end{array} $       | 129.8<br>(105.5, 152.3)<br>[0.33]                               | $\begin{array}{c} 128.4 \\ (109.0, 148.1) \\ [0.31] \end{array}$ |
| h            | 0.8   | $0.63 \\ (0.60, 0.67) \\ [0.21]$                                         | $ \begin{array}{c} 0.80 \\ (0.77, 0.85) \\ [0.03] \end{array} $ | $ \begin{array}{c} 0.77 \\ (0.72, 0.84) \\ [0.06] \end{array} $  |
| $ ho_s$      | 0.8   | $ \begin{array}{c} 0.82 \\ (0.79, 0.86) \\ [0.04] \end{array} $          | $0.84 \\ (0.80, 0.88) \\ [0.06]$                                | $0.82 \\ (0.79, 0.86) \\ [0.04]$                                 |
| $ ho_i$      | 0.8   | $ \begin{array}{c} 0.77 \\ (0.73, 0.81) \\ [0.05] \end{array} $          | $ \begin{array}{c} 0.80\\ (0.77, 0.84)\\ [0.03] \end{array} $   | $ \begin{array}{c} 0.79 \\ (0.75, 0.83) \\ [0.03] \end{array} $  |
| $\sigma_z$   | 0.005 | $0.0059 \ (0.0050, 0.0069) \ [0.22]$                                     | $0.0047 \\ (0.0039, 0.0055) \\ [0.12]$                          | $0.0055 \ (0.0047, 0.0066) \ [0.15]$                             |
| $\sigma_s$   | 0.005 | $  \begin{array}{c} 0.0046 \\  (0.0036, 0.0056) \\  [0.15] \end{array} $ |                                                                 | $0.0051 \\ (0.0039, 0.0068) \\ [0.19]$                           |
| $\sigma_i$   | 0.002 | $  \begin{array}{c} 0.0020 \\  (0.0019, 0.0024) \\  [0.09] \end{array} $ |                                                                 | $0.0020 \\ (0.0018, 0.0024) \\ [0.09]$                           |
| $\phi_{\pi}$ | 2.0   | $ \begin{array}{c} 1.96 \\ (1.77, 2.14) \\ [0.06] \end{array} $          | $ \begin{array}{c} 1.81 \\ (1.63, 1.99) \\ [0.11] \end{array} $ | $ \begin{array}{c} 1.81 \\ (1.62, 2.03) \\ [0.11] \end{array} $  |
| $\phi_y$     | 0.5   |                                                                          | $\begin{matrix} 0.50 \\ (0.33, 0.73) \\ [0.23] \end{matrix}$    |                                                                  |
| Σ            |       | [1.91]                                                                   | [1.59]                                                          | [1.23]                                                           |

# NOTIONAL INTEREST RATE ACCURACY




ATKINSON, RICHTER AND THROCKMORTON: THE ZERO LOWER BOUND AND ESTIMATION ACCURACY

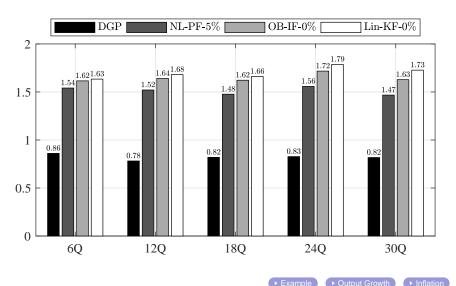

# **EXPECTED ZLB DURATIONS**



# 4+ QUARTER ZLB EVENT PROBABILITY



# NOTIONAL INTEREST RATE RESPONSE








➤ No Misspecification

# INTEREST RATE FORECAST ACCURACY



#### **CONCLUSION**

- Two promising methods for dealing with ZLB:
  - Estimate the fully nonlinear model with a particle filter
  - Estimate the piecewise linear model with an inversion filter
- NL-PF is typically more accurate than OB-IF but the differences are often small
- Much larger gains in accuracy from estimating a richer, less misspecified piecewise linear model
- Important to examine whether findings are generalizable
- Nonlinear model is considerably more versatile

# **Additional Material**

#### RELATED LITERATURE

- Estimation accuracy using artificial datasets:
  - Fernandez-Villaverde and Rubio-Ramirez (2005):
     RBC model using linear and nonlinear methods
  - ► Hirose and Inoue (2016): New Keynesian model with a ZLB constraint using linear methods
- Estimates of global nonlinear models with actual data: (Gust et al., 2017; liboshi et al., 2018; Plante et al., 2018; Richter and Throckmorton, 2016)
- Effect of positive ME variances on parameter estimates: (Canova et al., 2014, Cuba-Borda et al., 2017, Herbst and Schorfheide, 2017)



#### ADAPTED PARTICLE FILTER

- 1. Initialize the filter by drawing from the ergodic distribution.
- 2. For all particles  $p \in \{1, ..., N_p\}$  apply the following steps:
  - 2.1 Draw  $e_{t,p} \sim \mathbb{N}(\bar{e}_t, I)$ , where  $\bar{e}_t$  maximizes  $p(\xi_t | \mathbf{z}_t) p(\mathbf{z}_t | \mathbf{z}_{t-1})$ .
  - 2.2 Obtain  $\mathbf{z}_{t,p}$  and the vector of variables,  $\mathbf{w}_{t,p}$ , given  $\mathbf{z}_{t-1,p}$
  - 2.3 Calculate,  $\xi_{t,p} = \hat{\mathbf{x}}_{t,p}^{model} \hat{\mathbf{x}}_{t}^{data}$ . The weight on particle p is

$$\omega_{t,p} = \frac{p(\xi_t|\mathbf{z}_{t,p})p(\mathbf{z}_{t,p}|\mathbf{z}_{t-1,p})}{g(\mathbf{z}_{t,p}|\mathbf{z}_{t-1,p},\hat{\mathbf{x}}_t^{data})} \propto \frac{\exp(-\xi'_{t,p}H^{-1}\xi_{t,p}/2)\exp(-\mathbf{e}'_{t,p}\mathbf{e}_{t,p}/2)}{\exp(-(\mathbf{e}_{t,p}-\bar{\mathbf{e}}_t)'(\mathbf{e}_{t,p}-\bar{\mathbf{e}}_t)/2)}$$

The model's likelihood at t is  $\ell_t^{model} = \sum_{p=1}^{N_p} \omega_{t,p}/N_p$ .

- 2.4 Normalize the weights,  $W_{t,p} = \omega_{t,p} / \sum_{p=1}^{N_p} \omega_{t,p}$ . Then use systematic resampling with replacement from the particles.
- 3. Apply step 2 for  $t \in \{1, \dots, T\}$ .  $\log \ell^{model} = \sum_{t=1}^{T} \log \ell^{model}_t$ .

#### PARTICLE ADAPTION

- 1. Given  $\mathbf{z}_{t-1}$  and a guess for  $\bar{\mathbf{e}}_t$ , obtain  $\mathbf{z}_t$  and  $\mathbf{w}_{t,p}$ .
- 2. Calculate  $\xi_t = \hat{\mathbf{x}}_t^{model} \hat{\mathbf{x}}_t^{data}$ , which is multivariate normal:

$$p(\xi_t|\mathbf{z}_t) = (2\pi)^{-3/2}|H|^{-1/2}\exp(-\xi_t'H^{-1}\xi_t/2)$$
$$p(\mathbf{z}_t|\mathbf{z}_{t-1}) = (2\pi)^{-3/2}\exp(-\bar{\mathbf{e}}_t'\bar{\mathbf{e}}_t/2)$$

 $H \equiv \mathrm{diag}(\sigma_{me,\hat{y}}^2,\sigma_{me,\pi}^2,\sigma_{me,i}^2)$  is the ME covariance matrix.

3. Solve for the optimal  $\bar{\mathbf{e}}_t$  to maximize

$$p(\xi_t|\mathbf{z}_t)p(\mathbf{z}_t|\mathbf{z}_{t-1}) \propto \exp(-\xi_t'H^{-1}\xi_t/2)\exp(-\bar{\mathbf{e}}_t'\bar{\mathbf{e}}_t/2)$$

We converted MATLAB's fminsearch routine to Fortran.



# NONLINEAR SOLUTION METHOD

- Use linear solution as an initial conjecture:  $\tilde{c}^A(\mathbf{z}_t)$ ,  $\pi^A(\mathbf{z}_t)$
- For all nodes  $d \in D$ , implement the following steps:
  - 1. Solve for  $\{\tilde{w}_t, \tilde{y}_t, i^n_t, i_t, \tilde{\lambda}_t\}$  given  $\tilde{c}^A_{i-1}(\mathbf{z}^d_t)$  and  $\pi^A_{i-1}(\mathbf{z}^d_t)$
  - 2. Use piecewise linear interpolation to solve for updated values of consumption and inflation,  $\{\tilde{c}_{t+1}^m, \pi_{t+1}^m\}_{m=1}^M$ , given each realization of the updated state vector,  $\mathbf{z}_{t+1}$
  - 3. Given  $\{\tilde{c}_{t+1}^m, \pi_{t+1}^m\}_{m=1}^M$ , solve for future output,  $\{\tilde{y}_{t+1}^m\}_{m=1}^M$ , which enters expectations. Then numerically integrate.
  - 4. Use Chris Sims' csolve to determine the values of the policy functions that best satisfy the equilibrium system
- On iteration i,  $\max \text{dist}_i \equiv \max\{|\tilde{c}_i^A \tilde{c}_{i-1}^A|, |\pi_i^A \pi_{i-1}^A|\}$ . Continue iterating until  $\max \text{dist}_i < 10^{-6}$  for all d



# PRIOR DISTRIBUTIONS

| Parameter                       |            | Dist. | Mean  | SD    |
|---------------------------------|------------|-------|-------|-------|
| Rotemberg Price Adjustment Cost | φ          | Norm  | 100.0 | 25.00 |
| Inflation Gap Response          | $\phi_\pi$ | Norm  | 2.000 | 0.250 |
| Output Gap Response             | $\phi_y$   | Norm  | 0.500 | 0.250 |
| Habit Persistence               | h          | Beta  | 0.800 | 0.100 |
| Risk Premium Shock Persistence  | $ ho_s$    | Beta  | 0.800 | 0.100 |
| Notional Rate Persistence       | $ ho_i$    | Beta  | 0.800 | 0.100 |
| Growth Rate Shock SD            | $\sigma_z$ | IGam  | 0.005 | 0.005 |
| Risk Premium Shock SD           | $\sigma_s$ | IGam  | 0.005 | 0.005 |
| Notional Rate Shock SD          | $\sigma_i$ | IGam  | 0.002 | 0.002 |

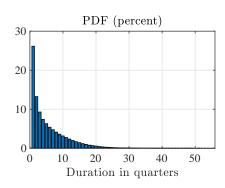


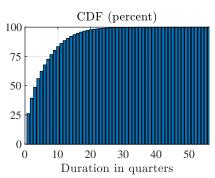
# STATE AND OBSERVATION EQUATIONS

Linear model

$$\hat{\mathbf{s}}_t = T(\vartheta)\hat{\mathbf{s}}_{t-1} + M(\vartheta)\varepsilon_t$$
$$\hat{\mathbf{x}}_t = H\hat{\mathbf{s}}_t + \xi_t$$

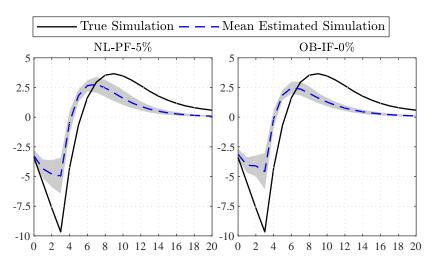
Nonlinear Model


$$\mathbf{s}_t = \Psi(\vartheta, \mathbf{s}_{t-1}, \varepsilon_t)$$
$$\mathbf{x}_t = H\mathbf{s}_t + \xi_t$$


 $\mathbf{x}_t = [y_t^g, \pi_t, i_t]$  (observables),  $\varepsilon_t = [\varepsilon_{z,t}, \varepsilon_{s,t}, \varepsilon_{i,t}]$  (shocks),  $\xi \sim \mathbb{N}(0, R)$  (measurement errors),  $\vartheta$  (parameters),  $\mathbf{s}_t = [\tilde{c}, n, \tilde{y}, \tilde{y}^{gdp}, y^g, \tilde{w}, \pi, i, i^n, mc, \tilde{\lambda}, z, s]$  (states)

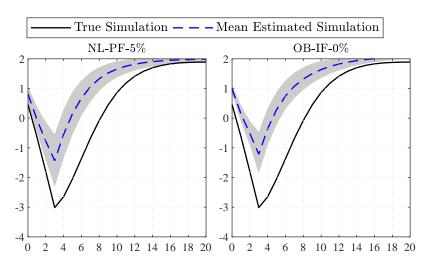


# DATASET STATISTICS


|                     | 6Q      | 12Q     | 18Q     | 24Q     | 30Q       |
|---------------------|---------|---------|---------|---------|-----------|
| CDF of ZLB Durs     | 0.678   | 0.885   | 0.966   | 0.992   | 0.998     |
| Sims to 50 Datasets | 150,300 | 154,950 | 256,950 | 391,950 | 1,030,300 |

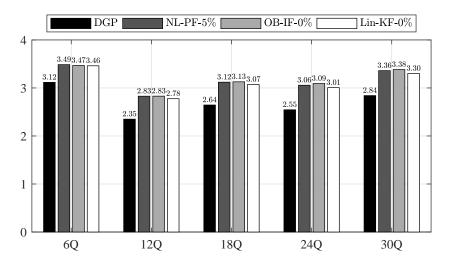






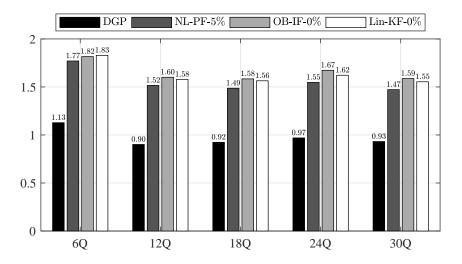

#### **OUTPUT GROWTH RESPONSE**






#### INFLATION RATE RESPONSE






# **OUTPUT GROWTH FORECAST ACCURACY**

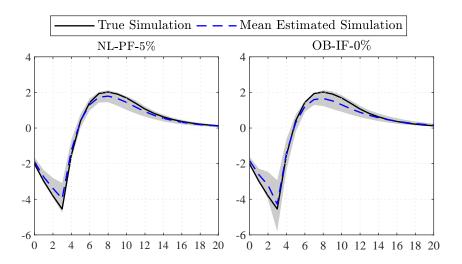




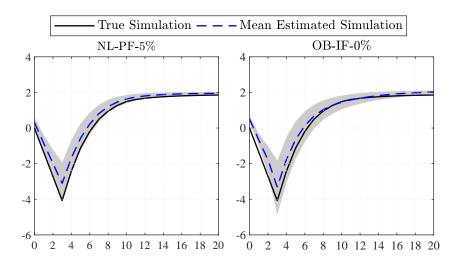
# INFLATION RATE FORECAST ACCURACY



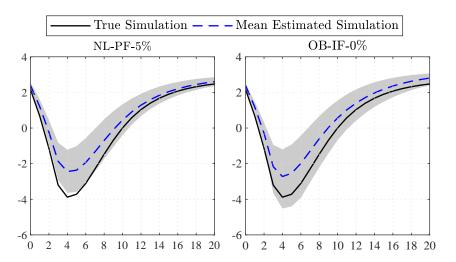



# No Misspecification: No ZLB Events

| Ptr          | Truth | NL-PF-5%                                                        | OB-IF-0%                                                        | Lin-KF-5%                                                       |
|--------------|-------|-----------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| $\varphi_p$  | 100   | $96.8 \\ \substack{(81.6,  109.9) \\ [0.09]}$                   | $\begin{array}{c} 94.3 \\ (81.8, 108.3) \\ [0.11] \end{array}$  | $103.7 \\ (92.6, 118.4) \\ [0.09]$                              |
| h            | 0.8   | $ \begin{array}{c} 0.79 \\ 0.76, 0.82) \\ [0.02] \end{array} $  | $ \begin{array}{c} 0.79 \\ 0.75, 0.82) \\ [0.02] \end{array} $  | $ \begin{array}{c} 0.80 \\ (0.76, 0.83) \\ [0.02] \end{array} $ |
| $ ho_s$      | 0.8   | 0.80<br>(0.76, 0.83)<br>[0.03]                                  | $ \begin{array}{c} 0.81 \\ (0.76, 0.85) \\ [0.04] \end{array} $ | $0.82 \\ (0.77, 0.86) \\ [0.05]$                                |
| $ ho_i$      | 0.8   | 0.82<br>(0.79, 0.84)<br>[0.03]                                  | $ \begin{array}{c} 0.79 \\ (0.77, 0.82) \\ [0.02] \end{array} $ | $ \begin{array}{c} 0.82 \\ (0.79, 0.84) \\ [0.03] \end{array} $ |
| $\sigma_z$   | 0.005 | $0.0037 \\ (0.0029, 0.0046) \\ [0.27]$                          | $0.0051 \\ (0.0044, 0.0056) \\ [0.08]$                          | $0.0038 \\ (0.0029, 0.0046) \\ [0.26]$                          |
| $\sigma_s$   | 0.005 |                                                                 |                                                                 | $0.0047 \\ (0.0034, 0.0059) \\ [0.21]$                          |
| $\sigma_i$   | 0.002 | $0.0016 \\ (0.0013, 0.0020) \\ [0.20]$                          |                                                                 | $0.0016 \\ (0.0013, 0.0019) \\ [0.20]$                          |
| $\phi_{\pi}$ | 2.0   | $ \begin{array}{c} 2.00 \\ (1.81, 2.21) \\ [0.06] \end{array} $ | $ \begin{array}{c} 1.95 \\ (1.74, 2.14) \\ [0.06] \end{array} $ | $\begin{array}{c} 1.97 \\ (1.76, 2.18) \\ [0.07] \end{array}$   |
| $\phi_y$     | 0.5   |                                                                 |                                                                 |                                                                 |
| Σ            |       | [1.12]                                                          | [0.78]                                                          | [1.14]                                                          |

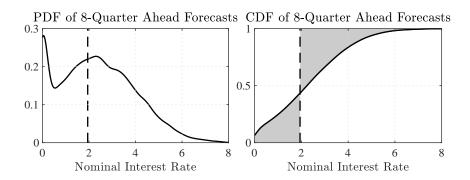

# No Misspecification: 30Q ZLB Events

| Ptr         | Truth | NL-PF-5%                                                          | OB-IF-0%                                                                | Lin-KF-5%                                                        |
|-------------|-------|-------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------|
| $\varphi_p$ | 100   | $ \begin{array}{c} 109.8 \\ (89.5, 130.3) \\ [0.15] \end{array} $ | $ \begin{array}{c} 110.6 \\ (95.3, 125.1) \\ [0.15] \end{array} $       | $\begin{array}{c} 128.5 \\ (111.2, 145.3) \\ [0.30] \end{array}$ |
| h           | 0.8   | $ \begin{array}{c} 0.79 \\ 0.77, 0.82) \\ [0.02] \end{array} $    | $ \begin{array}{c} 0.79 \\ 0.79 \\ (0.77, 0.82) \\ [0.02] \end{array} $ | $0.79 \\ (0.76, 0.82) \\ [0.03]$                                 |
| $ ho_s$     | 0.8   | 0.83<br>(0.78, 0.86)<br>[0.04]                                    | $ \begin{array}{c} 0.84 \\ (0.80, 0.87) \\ [0.06] \end{array} $         | $0.87 \\ (0.83, 0.91) \\ [0.10]$                                 |
| $ ho_i$     | 0.8   | 0.82<br>(0.78, 0.85)<br>[0.03]                                    | $ \begin{array}{c} 0.79 \\ (0.74, 0.82) \\ [0.03] \end{array} $         | $ \begin{array}{c} 0.86 \\ (0.83, 0.88) \\ [0.08] \end{array} $  |
| $\sigma_z$  | 0.005 | 0.0035 $(0.0025, 0.0045)$ $[0.33]$                                | $0.0052 \\ (0.0043, 0.0061) \\ [0.11]$                                  | $0.0034 \\ (0.0026, 0.0044) \\ [0.33]$                           |
| $\sigma_s$  | 0.005 |                                                                   |                                                                         | $0.0036 \\ (0.0027, 0.0046) \\ [0.32]$                           |
| $\sigma_i$  | 0.002 |                                                                   |                                                                         | $0.0015 \\ (0.0012, 0.0017) \\ [0.27]$                           |
| $\phi_\pi$  | 2.0   | $ \begin{array}{c} 2.01 \\ (1.82, 2.20) \\ [0.06] \end{array} $   | $ \begin{array}{c} 1.80 \\ (1.58, 2.06) \\ [0.12] \end{array} $         | $ \begin{array}{c} 1.62 \\ (1.42, 1.86) \\ [0.20] \end{array} $  |
| $\phi_y$    | 0.5   |                                                                   |                                                                         | $0.50 \\ (0.34, 0.66) \\ [0.19]$                                 |
| Σ           |       | [1.35]                                                            | [0.99]                                                                  | [1.82]                                                           |


# NO MISSPECIFICATION: OUTPUT GROWTH



# NO MISSPECIFICATION: INFLATION RATE




#### NO MISSPECIFICATION: NOTIONAL RATE





# FORECAST ACCURACY EXAMPLE



