The Coronavirus Stimulus Package: How large is the transfer multiplier?

Christian Bayer (University of Bonn, CEPR, CESifo, IZA)
Benjamin Born (Frankfurt School, CEPR, CESifo)
Ralph Luetticke (University College London, CEPR)
Gernot J. Müller (University of Tübingen, CEPR, CESifo)

MMCN Webinar Series
May 25, 2020
COVID-19 pandemic: major increase of economic uncertainty
The Coronavirus Stimulus Package: How large is the transfer multiplier?

And particularly strong increase of household income risk

Unemployment benefits: weekly initial claims 2019–20

Unemployment rate 2000–20

Shaded areas indicate U.S. recessions

Source: U.S. Bureau of Labor Statistics

Source: U.S. Employment and Training Administration

fred.stlouisfed.org
The Coronavirus Stimulus Package: How large is the transfer multiplier?

Introduction

Motivation

... also unprecedented fiscal stimulus

"Coronavirus Aid, Relief and Economic Security" (CARES) Act

- Signed into law on March 27, 2020
- In total 2,000 billion USD fiscal stimulus → 10% of GDP

Large transfer component

- 1,200 USD to (bottom 90% of) all taxpayers in Q2, 2020
- Unemployment benefit top up of 600 USD/week (until July)
- Earmarked spending for each item: 250 billion USD
What we do: model economic fallout from COVID-19 as \textbf{Q-shock}

Starting in March 2020
- Fraction of people (and capital) w/o income because of quarantine
- Fraction of goods becomes unavailable because of lockdown or infection risk

Study dynamics as of February 2020, Q-shock partly anticipated
- Quarantine creates idiosyncratic income risk & reduces expected income
- Consumption complementary lowers aggregate demand (Guerrieri et al., 2020)
What we do: quantify transfer multiplier in CARES Package

Incomplete markets model

- Potentially large effects of income risk and
- differences in marginal consumption propensities across households

Medium-scale HANK model

- Estimated in Bayer et al. (2020): captures steady state wealth distribution of the US as well as business cycle dynamics
- Feed Q-shock and transfers into model: both conditional (UIB) and unconditional transfers of the CARES package
Preview of results

Q-shock induces major recession

- GDP drops by about 10%
- About 1/5 of effect caused household income risk

Transfer multiplier

- Sizeable for conditional transfers (UIB+): exceeds unity on impact, long-run: 0.3 – 1.0
- Smaller for unconditional transfers
Related Literature (selection)

Model-based analysis of specific stimulus packages

▶ Cogan et al. (2010), Cwik and Wieland (2012)

Transfer multipliers

▶ Coenen et al. (2012), Bilbiie et al. (2013), Giambattista and Pennings (2017), Mehrotra (2018), Gechert et al. (2020) etc.

▶ HANK models (and fiscal policy): Oh and Reis (2012), Kaplan et al. (2018), Hagedorn et al. (2019), Bayer et al. (2019)

Macro-Models of COVID Pandemics and Recession

The Coronavirus Stimulus Package: How large is the transfer multiplier?

Model
Model overview

<table>
<thead>
<tr>
<th>Households</th>
<th>Production Sector</th>
<th>Government</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obtain Income</td>
<td>Trade Assets</td>
<td>Produce and Differentiate Consumption Goods</td>
</tr>
<tr>
<td>Wages</td>
<td>Bonds (b>B) = claims on HH debt, + government debt, (nominal, liquid) and</td>
<td>Intermediate goods producers Rent capital & labor</td>
</tr>
<tr>
<td>-> set by unions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-> s.t. adj. costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-> Idiosyncratic Risk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interest</td>
<td>Illiquid Assets, k = capital (trading friction)</td>
<td>Competitive Market for Intermediate Goods</td>
</tr>
<tr>
<td>-> from bonds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dividends</td>
<td></td>
<td>Entrepreneurs Monopolistic resellers s.t. price adjustment costs</td>
</tr>
<tr>
<td>-> from capital: MPK</td>
<td></td>
<td>Capital goods producers</td>
</tr>
<tr>
<td>-> liquid rental market</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-> as “entrepreneurs”</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Monetary authority** sets nominal interest rate -> Taylor rule
- **Fiscal authority** supplies government debt, consumes goods, taxes labor income and profits -> Expenditure Rule -> Tax rule
Worker-Households

- Productivity h (idiosyncratic and risky)
- Labor/Leisure Choice
- Consume
- Cannot trade state-contingent claims
- Two Assets: Liquid nominal bond, illiquid capital
Households

- Households face productivity risk
 \[\log h_{it} = \rho_h \log h_{it-1} + \epsilon^h_{it}, \quad \epsilon^h_{it} \sim N(0, \sigma_h) \]

- Union differentiates labor, driving a wedge between MPL and wages paid to workers.
- A fraction of households becomes “entrepreneurs” and earns all other pure rents. Stochastic transition into and out of this state
- A random fraction \(\lambda \) of households participates in the market for illiquid capital
- A random fraction of households transits into “quarantine”: cannot supply labor
Household Planning Problem

- GHH preferences with constant Frisch elasticity:
 \[\Rightarrow \] representative labor supply of the non-quarantined \(N_t \).

- Budget equation:

\[
\begin{align*}
 c_{it} + b_{it+1} + q_t k_{it+1} &= b_{it} \frac{R(b_{it}, R^b_t)}{\pi_t} + (q_t + r_t) k_{it} + T_t(h_{it}) \\
 &\quad + (1 - \tau_t) [(1 - Q_{it}) h_{it} w_t N_t + Q_{it} R(h_{it}) h_{it} w_t N_t + \mathbb{I}_{h_{it} \neq 0} \Pi^U_t + \mathbb{I}_{h_{it} = 0} \Pi^F_t], \\
 k_{it+1} &\geq 0, \quad b_{it+1} \geq B,
\end{align*}
\]
Household Planning Problem

- GHH preferences with constant Frisch elasticity:
 \[V^a_t(b, k, h, Q) = \max_{k', b'_a} u(x(b, b'_a, k, k', h, Q)) + \beta E_t V^a_{t+1}(b'_a, k', h', Q') \]
 \[V^n_t(b, k, h, Q) = \max_{b'_n} u(x(b, b'_n, k, k, h, Q)) + \beta E_t V^n_{t+1}(b'_n, k, h', Q') \]

- Budget equation:

- Bellman equation:
 \[E_t V^a_{t+1}(b', k', h', Q') = E_t [\lambda V^a_{t+1}(b', k', h', Q')] + E_t [(1 - \lambda) V^n_{t+1}(b', k, h', Q')] \]
Quarantine affects also capital

Fraction of workers affected by quarantine
- Effective labor supply: $H_t = \int (1 - Q_{it}) h_{it} di$ (Normalize StSt $H = 1$)

Same fraction of capital is moved to quarantine
- without being able to redistribute capital to non-quarantined workers
- effective capital in production: $u_t \times H_t \times K_t$, where u_t is utilization
Embedded in an otherwise almost standard NK model

- Factor prices (for non-quarantined workers and capital) equal marginal products

\[w_t^F = \alpha mc_t \left(\frac{u_t K_t}{N_t} \right)^{1-\alpha}, \]

\[r_t^F = u_t (1 - \alpha) mc_t \left(\frac{N_t}{u_t K_t} \right)^{\alpha} - q_t^F \delta(u_t), \]

\[\delta(u_t) = \delta_0 + \delta_1 (u_t - 1) + \delta_2 / 2 (u_t - 1)^2 \]
The Coronavirus Stimulus Package: How large is the transfer multiplier?

Model

Embedded in an otherwise almost standard NK model

- Factor prices (for non-quarantined workers and capital) equal marginal products
- Dividend paid to capital owners:

\[r_t = r_t^F H_t - (1 - H_t)(\delta_0 - \delta_1 + \delta_2 / 2) \]
Embedded in an otherwise almost standard NK model

- Factor prices (for non-quarantined workers and capital) equal marginal products
- Capital Price equals cost of production of capital

\[
1 = q_t \left[1 - \frac{\phi}{2} \left(\frac{l_t}{l_{t-1}} - 1 \right)^2 - \phi \left(\frac{l_t}{l_{t-1}} - 1 \right) \frac{l_t}{l_{t-1}} \right] + \beta q_{t+1} \phi \left(\frac{l_{t+1}}{l_t} - 1 \right) \left(\frac{l_{t+1}}{l_t} \right)^2
\]
Embedded in an otherwise standard NK model

- Phillips Curve under quadratic price adjustment costs

\[
\log \left(\frac{\pi_t}{\bar{\pi}} \right) = \beta E_t \left[\left(\frac{\pi_{t+1}}{\bar{\pi}} \right) \frac{Y_{t+1}}{Y_t} \right] + \kappa_y \left(m c_t - \frac{1}{\mu_y} \right),
\]

- Wage Phillips Curve under quadratic price adjustment costs

\[
\log \left(\frac{\pi^w_t}{\bar{\pi}^w} \right) = \beta E_t \left[\left(\frac{\pi^w_{t+1}}{\bar{\pi}^w} \right) \frac{N_{t+1} w_{t+1}^F}{N_t w_t^F} \right] + \kappa_w \left(\frac{w_t}{w_t^F} - \frac{1}{\mu^w} \right),
\]
The Coronavirus Stimulus Package: How large is the transfer multiplier?

Model

Government

Monetary Policy

- Monetary policy follows Taylor rule

\[
\log \frac{R_{t+1}^b}{R_b} = \rho_R \log \frac{R_t^b}{R_b} + (1 - \rho_R) \theta_\pi \log \frac{\pi_t}{\pi}
\]

- We abstract from output stabilization because output target is unclear
Government
Fiscal Policy

The government follows simple rules

- for government spending that reacts to government debt:

\[
\frac{G_t}{G} = \left(\frac{G_t}{G} \right)^{\rho_G} \left(\frac{B_t}{B} \right)^{(1-\rho_G)\gamma_B^G},
\]

(1)

where \(\gamma_B^G \) determines the degree of debt stabilization.
The government follows simple rules

- for government spending that reacts to government debt:

- and similarly for taxes:

\[
\frac{\tau_t}{\bar{\tau}} = \left(\frac{\tau_t}{\bar{\tau}}\right)^{\rho_{\tau}} \left(\frac{B_t}{\bar{B}}\right)^{(1-\rho_{\tau})\gamma_B}. \tag{1}
\]
Government

Debt

- Government debt determined by government budget constraint

\[B_{t+1} = G_t + \mathcal{T}_t + \mathcal{R}_t - T_t + R_t^b B_t / \pi_t, \]

- where \(T_t = \tau (N_t w_t + \Pi_t^U + \Pi_t^F) \)

- and \(\mathcal{T}_t \) and \(\mathcal{R}_t \) are untargeted and targeted transfers
Calibration
Calibration

Liquidity and wealth

Table: Calibrated parameters (annual)

<table>
<thead>
<tr>
<th>Targets</th>
<th>Model</th>
<th>Data</th>
<th>Source</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean illiquid assets (K/Y)</td>
<td>3.00</td>
<td>3.00</td>
<td>NIPA</td>
<td>Discount factor</td>
</tr>
<tr>
<td>Mean liquidity (B/Y)</td>
<td>0.60</td>
<td>0.60</td>
<td>FRED</td>
<td>Port. adj. probability</td>
</tr>
<tr>
<td>Top10 wealth share</td>
<td>0.67</td>
<td>0.67</td>
<td>WID</td>
<td>Fraction of entrepreneurs</td>
</tr>
<tr>
<td>Fraction borrowers</td>
<td>0.16</td>
<td>0.16</td>
<td>SCF</td>
<td>Borrowing penalty</td>
</tr>
</tbody>
</table>
Calibration: Households

Table: External/calibrated parameters (monthly frequency)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.993</td>
<td>Discount factor</td>
<td>see Table 1</td>
</tr>
<tr>
<td>ξ</td>
<td>4</td>
<td>Relative risk aversion</td>
<td>Kaplan et al. (2018)</td>
</tr>
<tr>
<td>γ</td>
<td>2</td>
<td>Inverse of Frisch elasticity</td>
<td>Chetty et al. (2011)</td>
</tr>
<tr>
<td>λ</td>
<td>0.035</td>
<td>Portfolio adj. prob.</td>
<td>see Table 1</td>
</tr>
<tr>
<td>ρ_h</td>
<td>0.993</td>
<td>Persistence labor income</td>
<td>Storesletten et al. (2004)</td>
</tr>
<tr>
<td>σ_h</td>
<td>0.069</td>
<td>STD labor income</td>
<td>Storesletten et al. (2004)</td>
</tr>
<tr>
<td>ζ</td>
<td>0.0002</td>
<td>Trans. prob. from W. to E.</td>
<td>see Table 1</td>
</tr>
<tr>
<td>ι</td>
<td>0.024</td>
<td>Trans. prob. from E. to W.</td>
<td>Guvenen et al. (2014)</td>
</tr>
<tr>
<td>p_{in}^{ss}</td>
<td>1/5000</td>
<td>Trans. prob. into Q</td>
<td></td>
</tr>
<tr>
<td>p_{out}</td>
<td>0.5</td>
<td>Trans. prob. out of Q</td>
<td></td>
</tr>
<tr>
<td>\bar{R}</td>
<td>1.95%</td>
<td>Borrowing penalty</td>
<td>see Table 1</td>
</tr>
</tbody>
</table>
Calibration: Firms

Table: External/calibrated parameters (monthly frequency)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0.68</td>
<td>Share of labor</td>
<td>62% labor income</td>
</tr>
<tr>
<td>δ_0</td>
<td>0.717%</td>
<td>Depreciation rate</td>
<td>Standard value</td>
</tr>
<tr>
<td>$\bar{\eta}$</td>
<td>11</td>
<td>Elasticity of substitution</td>
<td>Price markup 10%</td>
</tr>
<tr>
<td>$\bar{\zeta}$</td>
<td>11</td>
<td>Elasticity of substitution</td>
<td>Wage markup 10%</td>
</tr>
</tbody>
</table>

Government

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{\tau}^L$</td>
<td>0.2</td>
<td>Tax rate level</td>
<td>$G/Y = 15%$</td>
</tr>
<tr>
<td>\bar{R}^b</td>
<td>1.004</td>
<td>Nominal rate</td>
<td>1.6% p.a.</td>
</tr>
<tr>
<td>$\bar{\pi}$</td>
<td>1.00</td>
<td>Inflation</td>
<td>0% p.a.</td>
</tr>
</tbody>
</table>
The Coronavirus Stimulus Package: How large is the transfer multiplier?

Parameters

Parameters: Estimated in Bayer et al. (2020)

Table: Aggregate frictions and policy rules

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Real frictions</th>
<th>Nominal frictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ_s</td>
<td>1.483</td>
<td>κ 0.009</td>
</tr>
<tr>
<td>ϕ</td>
<td>2.093</td>
<td>κ_w 0.011</td>
</tr>
</tbody>
</table>

Government spending

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Real frictions</th>
<th>Nominal frictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_G</td>
<td>0.965</td>
<td>γ^G_B -0.100</td>
</tr>
<tr>
<td>γ_B</td>
<td>-0.100</td>
<td></td>
</tr>
</tbody>
</table>

Taxes

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Real frictions</th>
<th>Nominal frictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_τ</td>
<td>0.965</td>
<td>γ^τ_B -0.400</td>
</tr>
</tbody>
</table>

Monetary policy

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Real frictions</th>
<th>Nominal frictions</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_R</td>
<td>0.965</td>
<td>θ_{π} 1.500</td>
</tr>
<tr>
<td>θ_{π}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Coronavirus Stimulus Package: How large is the transfer multiplier?

Parameters

Solution

All IRFs obtained by linearization

To obtain the effect of conditional transfer

- Linearize around two steady states almost identical steady states:
 one with high transfer in Q-state, one with low transfer
Model simulation: Q-shock scenario and fiscal transfers under CARES act
The Q-shock

Quarantine shock (see also Guerrieri et al., 2020)

- Fraction of workers & capital receive no income; varieties not available
- Persistence parameter 0.85
- Incidence for bottom quarter of income distribution twice as high (Mongey and Weinberg 2020)

Timing ensures that uncertainty about income loss somewhat persistent

- February 2020: probability of quarantine as of March 3.5%
- March 2020: probability of quarantine as of April 7%
The Coronavirus Stimulus Package: How large is the transfer multiplier?

Results

Percent of workers, capital, and goods under quarantine

(a) Flow

(b) Stock
Macroeconomic adjustment to Q-shock

Output Y_t

Consumption C_t

Investment I_t

Macroeconomic adjustment to Q-shock

Effective hours $H_t N_t$

Intensive margin n_{it}

Effective capital $u_t H_t K_t$

Uncertainty channel quantitatively important

Output Y_t

Consumption C_t

Investment I_t

Y-axis: percentage deviations from steady state. X-axis: Months.
Fiscal transfers under CARES act

Unconditional transfers
- Every taxpayer receives 1200 USD
- Starting March 2020, persistence 0.5

Conditional transfers
- Top up of unemployment benefit: 2400 USD per month
- For as long as people are unemployed
- Total amount: 500 billion, rather than 250 billion as earmarked under CARES act
Baseline Q-Shock and fiscal transfers under CARES

Output Y_t

Consumption C_t

Investment I_t

Y-axis: percent deviations from steady state. X-axis: Months.
Baseline Q-Shock and fiscal transfers under CARES

Y-axis: quantities reported in percent deviations from steady state, prices in annualized percentage points. X-axis: Months.
Baseline Q-Shock and fiscal transfers under CARES

Notes: Y-axis: All quantities are reported in percent deviations from steady state. All prices are reported in annualized percentage points from steady state. X-axis: Months.
Conditional transfer does most of the trick

Output Y_t

Consumption C_t

Investment I_t

Cumulative Transfer Multiplier

Cumulative multiplier: \(\sum_{j=1}^{k} y_i / \sum_{j=1}^{k} t_i \)
Inequality: response of Gini coefficients

Concluding Remarks

Economic fallout from COVID-19: Q-shock

- Part of economy shuts down: workers, capital and goods under quarantine
- Focus on income risk due to unprecedented rise of unemployment

Quantitative evaluation within medium-scale HANK model

- Q-shock lowers output by about 10 percent, income risk accounts for about 1/5 of effect
- Conditional transfers particularly effective as they reduce income risk: multiplier larger than units in short run (fiscal insurance)
- Unconditional transfer less effective