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Linearization in aggregate states: basic idea

1. Stochastic household problem solved non-linearly as a
function of individual state
▶ Example: consumption as a function of cash on hand,

represented as a cubic spline on 100 knot points
▶ 100 variables: consumption at each knot point
▶ 100 equations: Euler equation on each knot point

2. High-dimensional representation of cross-sectional
distribution of states
▶ Distribution of capital as a histogram with 1000 bins
▶ 1000 variables: fraction of HH in each bin
▶ 1000 equations: Kolmogorov equation for each bin

3. Linearization around StSt without aggregate shocks:
100 × 1000 matrix: consumption at each knot point as a
function of the histogram

4. Solved by standard techniques for linearized model;
Blanchard/Kahn condition: 100 eigenvalues bigger than 1.



Methods for HA models
▶ Krusell and Smith (1998): small aggregate state, nonlinear,

consistency in OLS sense
▶ Reiter (2009): large aggregate state, linear in aggregates

Further developments:
▶ loss-less model reduction:Reiter (2010a)
▶ continuous time: Ahn, Kaplan, Moll, Winberry, and Wolf

(2018)
▶ linear superposition of impulse response functions:

Boppart, Krusell, and Mitman (2018); efficient
implementation: Auclert, Bardóczy, Rognlie, and Straub
(2021)

▶ Linear and quadratic perturbation in continuous time: Bilal
(2023),

▶ General method perturbation in discrete time: Bhandari,
Bourany, Evans, and Golosov (2023)

▶ Old and new alternatives: (Den Haan 1997; Reiter 2010b;
Mertens and Judd 2017; Winberry 2018; Bhandari, Evans,
Golosov, and Sargent 2021; Grand and Ragot 2022)



New method: second-order perturbation

Advantages:
▶ higher accuracy
▶ precautionary behavior w.r.t. aggregate shocks, risk premia
▶ approximation of welfare

Challenges:
1. state reduction
2. smoothness
3. efficient computation



Discrete versus continuous time

1. Continuous time: Bilal (2023)
▶ First differentiate, then discretize
▶ Object to approximate: gradient of value function

w.r.t. distribution
▶ High-dimensional, sparse
▶ Relatively fast to compute solution
▶ Relatively slow to simulate model

2. Discrete time: this paper
▶ First discretize, then differentiate
▶ Reduction to low-dimensional state vector
▶ Some overhead in determining state vector
▶ Very fast to simulate aggregates (including cross-sectional

statistics of distribution)
▶ Low dimension useful for estimation



General Model

Exogenous dyn. zt = Z (zt−1, εt) (1a)
Endogenous dyn.: qt = Q (St−1, εt ,at) (1b)
Aggr. equilibrium: 0 = A (St−1, εt ,at ,Et at+1,Et Vt+1) (1c)

Bellman equ.: Vt = F (at ,Et at+1,Et Vt+1) (1d)
Distribution dyn.: Dt = Π(at ,Et at+1,Et Vt+1)Dt−1 (1e)

where St−1 ≡ (Dt−1,qt−1, zt−1).
Compact notation:

M(St−1, εt ,Θt ,Et Θt+1) = 0 (2)

Implicit, optimal policy: Pt = P (St−1, εt ,at ,Et (Vt+1))
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Loss-less state reduction in linearized model
Intuition: Assume that we want to predict yt+i where

yt = CSt , St = ASt−1 + Bεt , Et−1 εt = 0 (3)

Then
Et yt+i = CAiSt (4)

Conditional expectations of future y ’s are QSt with

Q ≡


C

CA
· · ·

CAn−1

 (5)

SVD of Q:

Q =
[
U1 U2

] [S 0
0 0

] [
V ′

1
V ′

2

]
= U1SV ′

1, S diagonal (6)

U1 spans the linear combination of the states that contains the
relevant information about the expected y ’s.
I call it ”Conditional Expectations Approach (CEA)” (Reiter
2010a).



Reduction to few states

Idea: use first columns of U1 for state reduction.
▶ How many are needed for good approximation?
▶ Are these states useful for nonlinear approximation?

For perturbation, yes!



States and proxy distributions

▶ Replace the distribution Dt by a vector of ”moments” mt ,
linear in Dt :

mt = HDt (7)

▶ Use the idea of a ”proxy distribution” Dpd
t (Reiter 2010b). In

deviations from the steady state:

Dpd
t = D∗ +

[
ΣDH ′(HΣDH ′)−1

]
(mt − m∗

t ) (8)

Dpd
t is the expectation of Dt conditional on HDt = mt .

▶ Replace distribution dynamics by

mt = HΠ(st−1, εt ,at ,Et Vt+1)Φ
pdmt−1 (9)



Selecting state variables

▶ Minimal state vector:
▶ Aggregate capital (necessary for factor prices)
▶ Exogenous processes: lagged values and current shocks

▶ Different ways to add more states:
▶ MOM: additional moments of the cross-sectional

distribution (beyond the first moment)
▶ COH: capital owned by adjacent cohorts (OLG model)
▶ PCA: principal component analysis;

components of distribution that fluctuate strongly
▶ CEA: conditional-expectations approach (Reiter 2010a):

first elements in SVD of space that spans conditional
expectations of all future variables in linearized model

In all cases, orthogonalize the states so that covariance
matrix in linear model is diagonal.
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Smoothness

▶ Perturbation builds on smoothness of involved functions
(ideally analytic)

▶ Discretized methods (histograms etc.) non-smooth
▶ To make problem of agent smoother:

▶ approximate policy or value function by cubic spline (not
piecewise linear)

▶ make transition probabilities smooth function of decisions
▶ include smooth i.i.d. shock ξ (one for each endogenous

continuous state) into the model (similar to Childers (2018))
▶ at each state, identify critical values of ξ where regime

changes
▶ inequality constraint (on state or policy) starts binding
▶ discrete choice switches



Distribution dynamics

▶ set of grid points κi , i = 1, . . . ,nk .
▶ Interval boundaries κ̄j = (κj + κj+1)/2 for j = 1, . . . ,nk − 1.
▶ ”saving function” K ′(κi , ξ; Ω)

▶ Transition probabilities between grid points i and j :

Πi,j(x) = prob[K ′(κi , ξ; Ω) ∈ (κ̄j−1, κ̄j)] (10)
= cdf (Ξ(κ̄j , κi ; Ω))− cdf (Ξ(κj , κi ; Ω)) (11)

with

Ξ(k , κi ; Ω) ≡


ξ if k ≤ K ′(κi , ξ; Ω)

ξ̄ if k ≥ K ′(κi , ξ̄; Ω)

ξ s.t. K ′(κi , ξ; Ω) = k else
(12)



Threshold points

We consider three types of threshold points:
1. The constraint on the continuous state starts binding.
2. The constraint on some other choice variable starts

binding.
3. The optimal discrete choice switches.

They will be determined by implicit differentiation of a system of
three equations.



Handling regime changes

Task: differentiate the integral of a function w.r.t. parameters α
and β that has a kink or discountinuity at a threshold point ξ̂:

∂2 ∫ g(ξ)ϕ(ξ)dξ
∂α∂β

=

∫ ξ̂

−ξ̄

∂2g1(ξ)

∂α∂β
ϕ(ξ)dξ +

∫ ξ̄

ξ̂

∂2g2(ξ)

∂α∂β
ϕ(ξ)dξ

+
∂ξ̂

∂α

∂ξ̂

∂β
· (g′

1(ξ̂)− g′
2(ξ̂))

+
∂ξ̂

∂β
·

(
∂g1(ξ̂)

∂α
− ∂g2(ξ̂)

∂α

)
+

∂ξ̂

∂α
·

(
∂g1(ξ̂)

∂β
− ∂g2(ξ̂)

∂β

)

+
∂2ξ̂

∂α∂β
· (g1(ξ̂)− g2(ξ̂)) (13)

Conclusion: you have to identify and differentiate the threshold
point as well.
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Notation

▶ Greek letters α and β run over the elements of the time-t
state vector x̃t = (s̃t−1, εt).

▶ Greek letters γ and δ run over the elements of the
predetermined states s̃t at the end of period t .

▶ Greek letters λ and µ run over the future shocks εt+1.
▶ Roman letters i and j , run over all time-t variables in

Θ̃t = [s̃t ; ỹt ; Ṽt ]

▶ The uppercase Roman letters I and J run over the
elements of future variables Θ̃t+1.



Quadratic perturbation in states

Rk
αβ +Mk

i H i
αβ +Mk

I

[
GI

γHγ
αβ +

1
2

Ĥ I
γδ(G

γ
βGδ

α + Gγ
αGδ

β)

]
= 0

where
▶ Rk

αβ only contains linear terms
▶ G, H: linear and quadratic coefficients
▶ Mk

α ≡ ∂Mk

∂xα
t

Fast iteration: lagged update of ALM
1. Set Ĥ i

αβ = 0 for all i , α and β.

2. Given Ĥ, and separately for each pair (α, β), solve for H i
αβ:

Rk
αβ+Mk

i H i
αβ+Mk

I

[
GI

γĤγ
αβ + Ĥ I

αβ(G
α
βGβ

α + Gα
αGβ

β)/2
]
= 0

3. Set Ĥ i
αβ = H i

αβ for all i , α and β.
4. Iterate 2. and 3. until convergence.



Effect of aggregate uncertainty

Precaution w.r.t. aggregate shocks H i
σσ:

Mk
i H i

σσ +Mk
I

[
GI

γHγ
σσ + H I

λµΣλµ + H I
σσ

]
= 0 (14)
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Models: technology

▶ Cobb-Douglas production function:

Yt = ZtKα
t−1L1−α

t (15)

▶ Total factor productivity:

Zt = 1 + ρz · (Zt−1 − 1) + ϵz,t , ϵz,t ∼ (0, σz) (16)

▶ Capital dynamics:

Kt = It + (1 − δt)Kt−1 (17)

▶ Competitive factor markets
▶ Aggregate resource constraint Yt = Ct + It



Infinite horizon models

1. Divisible labor, utility log(c) + η log(1 − L), L ≥ 0.
2. Indivisible-labor: almost identical to Chang and Kim

(2007); non-convex consumer problem
3. Idiosyncratic household productivity follows Markov chain



A model of stochastic aging (OLG)

▶ Worker households: 12 age groups, groups 9-12 retired,
groups 1-8 work,

▶ idiosyncratic labor productivity shock
▶ HH moves to higher age group with positive probability
▶ Groups 11 and 12 have positive probability of dying, are

followed by young agent
▶ Accidental bequests
▶ 3 aggregate shock processes: TFP, age-specific

technology, depreciation
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Accuracy checks

1. Deterministic solution (without precautionary effect):
compare IR function of quadratic approximation
(w.r.t. states) to nonlinear perfect foresight solution
(response to one-time shock).

2. Stochastic solution: ”Euler equation errors” along
simulated paths (consistency check, not a comparison to
exact solution; in the paper).

No precise error estimate of precautionary terms, but they are
simple function of quadratic terms w.r.t. states.



Approximation errors from aggregation and
linearization

▶ Aggregation error is linear in shock size (standard
deviation)

▶ Linearization error is quadratic in shock size
▶ Error from quadratic approximation is third order in shock

size, etc.



Accuracy Divisible Labor Model

Labor Investment Capital
σ Type #s Neg NegPos Neg NegPos Neg NegPos
1 (3.7e-3) (1.7e-5) (5.8e-4) (5.9e-7) (4.9e-3) (6.9e-6)

LIN 1.69e-5 1.67e-5 5.85e-7 5.88e-7 6.88e-6 6.86e-6
- 0 1.28e-4 2.60e-6 4.93e-6 1.58e-7 2.66e-5 2.31e-6
MOM 2 7.87e-6 2.96e-6 2.19e-7 1.47e-7 3.74e-6 2.77e-6
PCA 2 6.47e-6 2.61e-6 4.67e-7 1.47e-7 6.14e-6 2.36e-6
CEA 2 2.35e-6 1.75e-6 2.11e-7 1.50e-7 2.85e-6 2.59e-6

10 (3.9e-2) (1.6e-3) (5.8e-3) (4.7e-5) (4.8e-2) (6.2e-4)
LIN 1.68e-3 1.62e-3 4.71e-5 4.67e-5 6.19e-4 6.15e-4
- 0 1.46e-3 1.35e-4 5.04e-5 6.20e-6 2.81e-4 1.42e-4
MOM 2 1.44e-4 1.43e-4 4.42e-6 4.75e-6 7.48e-5 7.01e-5
PCA 2 9.73e-5 9.54e-5 7.58e-6 3.28e-6 9.72e-5 9.77e-5
CEA 2 8.52e-5 1.49e-5 1.74e-6 5.57e-7 9.76e-6 1.40e-5



Divisible-labor model, one-time shock 10 stdevs
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Indivisible-labor model, one-time shock 10 stdevs
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Accuracy OLG Model

Labor Investment Capital
σ Type #s Neg NegPos Neg NegPos Neg NegPos
3 (1.3e-2) (5.6e-3) (1.3e-2) (2.9e-4) (2.1e-2) (1.5e-3)

LIN 5.64e-3 5.57e-3 2.91e-4 2.89e-4 1.45e-3 1.45e-3
- 0 8.03e-4 3.26e-4 9.31e-5 1.44e-5 8.61e-4 1.01e-4
COH 5 4.80e-4 3.60e-4 2.23e-5 1.09e-5 1.14e-4 1.49e-4
PCA 4 4.21e-4 3.80e-4 6.37e-5 5.39e-5 1.41e-3 1.21e-3
CEA 4 2.31e-4 1.40e-4 1.53e-5 1.13e-5 6.52e-5 3.48e-5

10 (1.4e-2) (6.5e-2) (4.6e-2) (3.2e-3) (7.7e-2) (1.6e-2)
LIN 6.55e-2 6.49e-2 3.25e-3 3.24e-3 1.61e-2 1.63e-2
- 0 5.72e-3 4.87e-3 2.84e-4 2.58e-4 3.02e-3 1.01e-3
COH 5 4.60e-3 3.96e-3 1.39e-4 1.73e-4 1.39e-3 1.52e-3
PCA 4 3.70e-3 2.42e-3 7.19e-4 6.81e-4 1.74e-2 1.54e-2
CEA 4 5.14e-3 4.50e-3 1.43e-4 2.23e-4 2.90e-4 5.03e-4



OLG model, one-time shock 3 stdevs

-3.8

-3.6

-3.4

-3.2

-3

-2.8

-2.6

-2.4

-2.2

 0  5  10  15  20

lo
g
1
0
(e

rr
o
r)

Negative Shock: Labor

CEA
PCA
Coh

Linear



OLG model, residual along simulation path
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OLG model, precautionary effect
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Computation times

▶ Written in Julia
▶ Computations done on a Windows desktop with an AMD

Ryzen 7-3700X 8-core CPU.
▶ Timing somewhat stochastic (garbage collection)

Divisible Labor Indiv. Labor OLG
Solution #states seconds #st. sec. #st. sec.
SteadyState 1401 1.6 8501 17.7 16803 25.0
Linear 1401 3.0 8501 35.8 16803 57.2
Quadratic 5 2.7 5 29.5 7 85.6
Quadratic 10 4.7 10 47.2 10 113.3
Quadratic 15 6.9 15 70.0 15 141.5
Quadratic 20 10.3 20 102.3 20 188.5



Conclusions

▶ Second-order perturbation fast to compute
▶ Accuracy at least one order of magnitude better than in

linear solution
▶ High accuracy even for large shocks
▶ Few additional states are sufficient, in all models

considered; adding more states can be detrimental
▶ CEA approach works best in all example models.
▶ Precautionary effect w.r.t. aggregate variables of similar

magnitude as in RA models.



Summary

▶ State selection by CEA works well for second-order
perturbation.

▶ Improvement in accuracy over linear solution by at least an
order of magnitude.

▶ In example models (no strong aggregate nonlinearity)
accuracy high even for very large shocks.
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Ideas

Neural networks very flexible, but gradient descent can be very
slow, therefore
▶ Set up neural network as a generalization of linear solution

with state reduction
▶ Start from perturbation solution; don’t learn everything

from scratch
▶ Combine with nonlinear transformation of variables (Judd

2002)
▶ Solve for value and policy functions by backward iteration

(Reiter 2010b).
▶ Use stochastic gradient descent for other stuff, (adding

further states if necessary, nonlinear least squares etc.)



Linear solution as network

S → s optimal state aggregation in linear model
s → (y , v) linearized solution
v → V optimal value function aggregation in linear model

(y ,V ) → P solve for optimal policy point-wise
P → Π policy determines state transition matrix
S′ = Π(S)



Enlarging the network, example

S → s optimal state aggregation in linear model

s → s2 quadratic functions of states
s → z = BC(s) nonlinear transformations (Box-Cox)
z → Sig(z) map into bounded range (Sigmoid)
s → (y , v) linearized solution
v → V value function aggregation in linear model

(y ,V ) → P solve for optimal policy point-wise
P → Π policy determines state transition matrix
S′ = Π(S)

Important: scale nonlinear transformations so as to leave
derivatives at steady state unchanged.



Outline of solution method: ”shallow learning”

▶ Preserve information from perturbation solution
▶ Temporarily fix grid by simulation, solve value function by

backward induction
▶ Find useful nonlinear transformations
▶ Approximate value function pointwise by nonlinear LS
▶ Use gradient descent on some subproblems, not on the

one big problem
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