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Abstract

I provide a model uncertainty foundation to the power certainty equivalent of Epstein-Zin-Weil risk

sensitive preferences (EZ), enabling the analysis of these preferences using detection probabilities

(DEPs) and worst case models. This completes the connection between these preferences and the

model uncertainty of Hansen and Sargent (2007) (HS) that was previously limited to the special case

of unit elasticity of intertemporal substitution. The connection between EZ and HS rests on a powerlike

extension of entropy and its associated statistics from Tsallis (1988) and I show that the same additional

margin of pessimism that implies this connection can close the gap to the empirical Sharpe ratio in a

more general specification. For the specific cases of EZ and HS preferences, I find that calibrations

that match detection error probabilities yield comparable asset pricing implications across models.

Surprisingly, I find that the low levels of risk aversion with EZ preferences that match asset pricing

facts are associated with a high level of model uncertainty in the long run risk environment of Bansal

and Yaron (2004).
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1 Introduction

Tallarini (2000), Barillas, Hansen, and Sargent (2009), Ju and Miao (2012) and others have empha-

sized the close relationship between model uncertainty preferences1 and the risk-sensitive preferences

of Epstein and Zin (1989) and Weil (1990) (henceforth EZ). This relationship, however, has only

been shown formally under a Hansen, Heaton, Lee, and Roussanov’s (2007, p. 3975) “special set of

assumptions” that align EZ recursive preferences with Hansen and Sargent’s (2007) multiplier model

uncertainty (henceforth HS) through a logarithmic transformation and a unit elasticity of intertemporal

substitution.2

Model uncertainty in macroeconomics (see Hansen and Sargent (2001, 2010) and the detailed

treatment in the monograph Hansen and Sargent (2007)) places agents in a decision environment rid-

dled with unstructured, Knightian uncertainty that leads to agents forming their decision rules to be

robust to a worst case (i.e., welfare minimizing) model. Barillas, Hansen, and Sargent (2009) evoke a

critique from Robert E. Lucas, Jr., in their epigraph that although it would be nice to resolve the equity

premium puzzle, we need to look past high values of risk aversion to do so and, as an alternative, offer

a small amount of model uncertainty as a possible contributor to the resolution of this conflict. This

is especially promising as Swanson (2016) shows that a large amount of risk aversion summarizes

many of the puzzles in macro-finance literature. Yet Bansal and Yaron’s (2004) popular long-run risk

resolution of the equity premium, for example, requires that the intertemporal elasticity of substitution

differ from one, exactly when the relationship between HS and EZ breaks down.

Specifically, this paper addresses the open question of Backus, Routledge, and Zin (2005, p. 361)

as to “whether there’s a similar relationship between Kreps-Porteus preferences [(EZ)] with (say) a

power certainty equivalent and a powerlike alternative to the entropy constraint [in HS]” by presenting

ambiguity averse preferences that contain EZ preferences for arbitrary felicity functions. Furthermore

is makes a first step towards assessing the plausibility of EZ preferences as interpreted from an am-

biguity perspective using detection error probabilities (henceforth DEP) as proposed by Anderson,

1Hansen and Marinacci (2016) summarize the connection between Hansen and Sargent’s (2007) multiplier preference

approach and other “variational preferences” (Maccheroni, Marinacci, and Rustichini 2006) such as the multiple priors of

Gilboa and Schmeidler (1989) and smooth ambiguity of Klibanoff, Marinacci, and Mukerji (2005). Hansen and Sargent

(2010) provide a discussion of the link between them. Ju and Miao’s (2012) generalized smooth ambiguity preferences nest

these variational preferences as special cases from a risk sensitive and ambiguity (vis-a-vis unobservable states) perspective.
2Hansen (2005) confirms that the state dependent multiplier of Maenhout (2004) recovers a model uncertainty founda-

tion for EZ preferences, but notes that this holds only in the continuous time case. For the preferences I derive here, I also

find that the multiplier on the entropy constraint can be interpreted as state dependent.
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Hansen, and Sargent (2003) and Hansen and Sargent (2007) on their resulting worst case models.

I propose a generalization of the statistics of model uncertainty preferences beyond the logarithmic

Bolzmann-Gibbs-Shannon measure of entropy to the measure introduced by Tsallis (1988) for nonex-

tensive statistical mechanics in thermodynamics. This results in a generalized exponential certainty

equivalent that encapsulates both the exponential and power certainty equivalents of HS and EZ. From

the lens of model uncertainty, decreases in risk aversion in EZ’s risk-sensitive preferences can be in-

terpreted as a reduction in model uncertainty tempered by an increase in pessimism in the form of an

overweighting the probability of pernicious distortions when formulating robust decision rules. This

overweighting of events vis-a-vis objective probabilities relates to the choice-theoretic framework of

Quiggin (1982) and results here from the generalized alternative entropy measure and its associated

subadditivity of probabilities, the latter found also in Gilboa (1987) and Schmiedler (1989). Dow and

Werlang (1992) emphasize that expectations formed under probabilities that do not sum to one (i.e.,

subadditive) reflect both agent’s uncertainty and aversion thereto. My generalization and the introduc-

tion of an additional form of uncertainty, pessimism in the sense above, is not costless. While in the

EZ case, there is only one free parameter to be calibrated using DEPs, the generalized uncertainty case

has two parameters, which does not lead to a unique mapping from DEPs.

Applying these preferences to an endowment economy with long run risk following Bansal and

Yaron (2004) and Bansal, Kiku, and Yaron (2016) and to an otherwise standard RBC production econ-

omy in the vein of Tallarini (2000),3 I find that both HS and the model uncertainty formulation for EZ

behave comparably for a given DEP with respect to their maximum Sharpe ratios. In the endowment

economy, I find that EZ preferences attribute high amount of model uncertainty to a low amount of

risk aversion in contrast to the results of Barillas, Hansen, and Sargent (2009) under HS preferences.

The EZ specification of model uncertainty entails a degree of probability over/underweighting that

involves a violation of the law of total probability – the equivalence with HS preferences necessi-

tates an exclusion of this additional distortion on behalf of the econometrician, implying that agents

over/underweight events made more/less likely under this distorted probability distribution.

Examining the worst case density associated with the different specifications, I find that agents

with model uncertainty fear lower mean consumption/productivity growth. This is broadly consistent

3See Bidder and Smith (2012) for a model uncertainty RBC model with investment adjustment costs, variable capital

utilization, stochastic volatility, and labor wealth effect sensitive period utility and Ilut and Schneider (2014) for a model

uncertainty New Keynesian model with confidence shocks. Backus, Ferriere, and Zin (2015) provide a thorough analysis

of variants of a standard RBC model under risk and ambiguity.
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with other studies: Barillas, Hansen, and Sargent (2009), Bidder and Smith (2012), Ellison and Sargent

(2015), Bidder and Dew-Becker (2016) find that the worst case is associated with lower mean growth.

Under all three specifications, agents are concerned that mean of the volatility process in the endow-

ment economy and that of output growth in the production economy might be higher than specified

in the approximating model. In terms of the asset pricing implications, both EZ and HS preferences

require a DEP of less than 5% to generate Sharpe ratios comparable to the empirical ratio, whereas the

generalized model uncertainty can accomplish this with a conservative detection probability of 25%.

The remainder of the paper is as follows. I begin with the generalized measure of entropy in

section 2. In section 3, I apply this measure to a general dynamic model, derive conditions that recover

both EZ’s as well as HS’s original model uncertainty framework, assess atemporal risk aversion in

all three frameworks, and examine the asset pricing implications of the generalized model uncertainty

specification. I then apply the generalized model uncertainty to both an endowment economy and a

production economy in section 4 and examine the asset pricing and macroeconomic performance of

all three frameworks. Section 5 concludes.

2 Generalized Entropy

Backus, Routledge, and Zin (2005, p. 361) pose the open question of whether there is a powerlike

alternative to the entropy constraint that can relate HS model uncertainty to EZ preferences. I will

address the first portion of this question in this section and return to the second portion in the next

section. HS model uncertainty produces an exponential certainty via standard (logarithmic) relative

entropy. I will appeal to the physics literature on statistical mechanics and the generalization of stan-

dard Boltzmann-Gibbs-Shannon (logarithmic) measure of entropy introduced by Tsallis (1988).4 This

measure of entropy is associated with a powerlike relative entropy enduced by subadditivity that un-

der/overweights probabilities resulting in a divergence from the law of total probability that I interpret

as pessimism. After introducing the basic properties and intuition (the associated over/underweighting

of probabilities will play a crucial role in addressing the second portion of the question above), I turn

4While Tsallis (2009) documents a wide, interdisciplinary array of empirical applications consistent with this measure,

it is not entirely clear whether this is an appropriate measure even in the physics literature whence it emanated – see the

critique of Cho (2002) and the discussion in Abe, Rajagopal, Plastino, Latora, Rapisarda, and Robledo (2003). It will be

the single parameter in the model uncertainty formulation of EZ preferences and I will discipline it using DEPs. For the

two parameter generalized model uncertainty preferences that I will introduce subsequently, only one parameter can be

disciplined using DEPs and I take the entropic index as a free parameter, examine its consequences for model uncertainty,

and leave its disciplining for further study.
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to the associated measure of relative entropy and compare its properties with those of the standard

measure of relative entropy or Kullback-Leibler divergence.

The standard Boltzmann-Gibbs-Shannon measure of (negative) entropy

S1(p(x))
.
=−

∫
p(x) ln p(x)dx(1)

is used in the context of information theory, see, e.g., Cover and Thomas (1991), as a measure of the

expected information content of a realization from the distribution p(x)—that is, the expected surprisal

or unpredictability of a distribution.5

The uniqueness theorems of Shannon and Khinchin6 provide an axiomatic foundation for the func-

tion in (1) and prove that its functional form uniquely satisfies their set of axioms. If their axioms are

modified to pseudoadditivity7 and biased probabilities pq,i = p
q
1,i, then there exists an unique measure

of entropy for all real values of q—the entropic index.

This measure, q entropy introduced by Tsallis (1988), is given by

Sq(p(x))
.
=−

∫ (
1− p(x)q

1−q

)

dx =−
∫

p(x)q lnq p(x)dx(2)

where the generalized q-logarithm and its inverse, the generalized q-exponential function, are

lnq (x)
.
=

x1−q −1

1−q
, expq (x)

.
= [1+(1−q)x]

1
1−q(3)

Note that both the foregoing can be extended over their removable singularities at q = 1 to give the

standard base e logarithm and exponential function as limiting cases. Thus, Tsallis’s (1988) entropy

recovers (1) as a limiting case, generalizing Boltzmann-Gibbs-Shannon entropy.

The entropic index q can be interpreted as biasing standard probabilities following Tsallis, Mendes,

and Plastino (1998), Tsallis (2003), and Tsallis (2009, Ch. 3) and, as noted above, from the generaliza-

tion of the Shannon-Khinchin uniqueness theorems. Indeed as a probability is positive and less than

one, 0 ≤ pi ≤ 1, p
q
i ≥ pi for q < 1 and p

q
i ≤ pi for q > 1. Thus, under biased probabilities, one expects

more (less) surprisal from a realization of random variable when q < 1 (q > 1). The total probability

under the biased probabilities is depicted in figure 1a for a two state system8 and clearly shows an

increase (decrease) in expected surprisal with q < 1 (q > 1) stemming from an increase (decrease) in

total probability. Following Schmiedler (1989) and Dow and Werlang (1992), q > 1 can be interpreted

5This follows analogously, mathematically and conceptually, with the origin of the term “entropy” as the transformation

content in classical thermodynamics and uncertainty or “mixedupness” in statistical mechanics.
6See Tsallis (2009, Ch. 2).
7For two independent subsystems A and B, pseudoadditivity results in Sq(A+B) = Sq(A)+Sq(B)+(1−q)Sq(A)Sq(B),

where standard additivity results in the limiting case limq→1 Sq(A+B) = S1(A)+ S1(B).
8That is, the probability of state one is given by p and that of state two by 1− p. Of course, the continuous measures

above and investigated afterwards are replaced by their discrete counterparts for this example. See Tsallis (2009).
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as a situation of uncertainty from the perspective of objective probabilities.
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(b) Probabilities of Escort Distribution
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(c) q-Relative Entropy vis-a-vis p = 0.5

Figure 1: Biased Probabilites and Relative Entropy

magenta—q = 0.1, red—q = 0.5, black—q = 1, blue—q = 2, green—q = 10

To preserve the law of total probability, an escort distribution can be defined

pq(x)
.
=

p(x)q∫
p(x)qdx

(4)

which normalizes the biased probabilities by the total probability from above. For the two state system,

figure 1b plots the probabilities of the escort distribution as a function of the initial probability for

different values of the entropic index. As can be seen, the entropic index favors—i.e., increases the

probability of—less likely events if q < 1 and overweights more likely events if q > 1, see also Tsallis,

Mendes, and Plastino (1998), Tsallis (2003), and Tsallis (2009, Ch. 3). In contrast to the standard

expectations operator with respect to the density p(x)

E p [x]
.
=

∫
xp(x)dx(5)

the escort distribution gives a q-generalization of the expectations operator with respect to the density

p(x)

E p
q [x]

.
=

∫
x

p(x)q∫
p(x)qdx

dx(6)

As shown by Abe and Bagci (2005), this expectation is intricately linked to the functional form of

entropy, and this escort expectation leads to a q-generalization of relative entropy that I turn to next.

When comparing two distributions, relative entropy or the Kullback-Leibler divergence of p̃(x)

with respect to the reference distribution p(x)

I1 (p̃(x), p(x))
.
=

∫
p̃(x) ln

p̃(x)

p(x)
dx(7)

provides a consistent method of discriminating between two probability distributions by quantifying
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distance between the two distributions.9 This can be q-generalized following Tsallis (1988), Abe and

Bagci (2005), and Tsallis (2009, Ch. 3) as

Iq (p̃(x), p(x))
.
=

∫
p(x)

(

p̃(x)

p(x)

)q

lnq

(

p̃(x)

p(x)

)

dx(8)

and is positive and convex (both jointly and individually in p̃(x) and p(x), see Abe and Bagci (2005),

for q > 0.10 Figure 3a plots (8) for a two state random variable over possible values of p̃ for differing

values of the entropic index with the baseline distribution given by the equiprobable case. Entropy is

positive and increasing in the entropic index except when the two distributions match (p̃ = p = 0.5).

For q > 1 (q < 1), relative entropy is greater (less) than the Kullback-Leibler divergence.

3 Generalized Multiplier Preferences

In this section I apply the generalized version of entropy and the associated probability measures to the

min-max setup of HS. After first presenting and interpreting the general case from two perspectives

that share different commonalities with HS’s original multiplier preference, I then turn to two special

cases. The first recovers HS’s original multiplier setup, which serves to link the generalized case to this

well studied robustness problem. The second delivers a power certainty equivalent, which presents a

model uncertainty foundation for EZ preferences in arbitrary settings (beyond the special unit elasticity

of intertemporal substitution and log preference relationship that is already known). Finally, I examine

a measure of risk aversion for all three cases (general, HS, and EZ) and explore general asset pricing

implications vis-a-vis a decomposition of the pricing kernel.

Here, agents have a preference for robustness; i.e., their decisions are tempered by a fear of model

misspecification. This fear is formalized by bounds, derived by a min-max approach, on value func-

tions over a set of models. This set is constrained by penalizing alternative models considered by the

agent according to their relative entropy measured vis-a-vis the agent’s baseline, or approximating,

model. This provides the modeler with a disciplined departure from rational expectations, as agents

can have a common approximating model shared with nature, yet demonstrate an ex post divergence

by tempering their decisions according to unstructured uncertainty surrounding this model.

Consider a recursive dynamic model where a time-invariant transition density

p(x′,x,a)(9)

9Though it is not a metric, as it and the generalization that follows are not symmetric, see Tsallis (1998).
10See the online appendix for a discussion of generalized entropy and its derivative in two state settings.
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that gives the distribution of the future state, x′ ∈ X , conditional on the current state, x ∈ X , and an x

measurable control variable, a ∈ A. Thus, the probability distribution over the sequence of states, or

model,11 is determined by

π(x′,x)
.
= p(x′,x,a(x))(10)

where the control variable, a, is chosen to maximize lifetime utility expressed recursively by

V (x) = max
a∈A

u(x,a(x))+βR (V )(x)(11)

where the aggregator R (V )(x) is derived by considering an agent who entertains a collection of dis-

torted models, each described by a distorted density

p̃(x′,x,a(x))(12)

close to the approximating model (10). The likelihood ratio between the models is

g(x′,x)
.
=

p̃(x′,x,a(x))

p(x′,x,a(x))
(13)

The decision maker’s desire for robustness is formulated as a two player zero sum game, min-max util-

ity, with a minimizing agent, who selects a probability distribution to minimize the decision maker’s

payoff given her decision or policy function. The decision maker takes this into account when formu-

lating her decision function. I replace HS’s Boltzmann-Gibbs-Shannon measure of entropy with the

generalized form in (8) from the previous section and calculate distorted expectations using the biased

probabilities associated with this generalized measure

R (V )(x) = min
g(x′,x)>0∫

g(x′,x)p(x′,x,a(x))dx′=1

∫
V (x′)g(x′,x)qp(x′,x,a(x))dx′+θIq

(

p̃(x′,x,a(x)), p(x′,x,a(x))|x
)

= min
g(x′,x)>0∫

g(x′,x)p(x′,x,a(x))dx′=1

∫
V (x′)g(x′,x)q−1 p̃(x′,x,a(x))dx′+θIq

(

p̃(x′,x,a(x)), p(x′,x,a(x))|x
)

(14)

The second term is the generalized relative entropy, conditional on x, of the distorted density to the

approximating model. The first term evaluates continuation utility, conditioning on the current state x,

under the distorted density weighted by the likelihood ratio between the distorted and approximated

densities or Radon-Nikodym derivative g(x′,x) to the power of the entropic index q. Thus q is not only

the entropic index used in selecting the measure of entropy used to penalize worst case density func-

tions (the second term on the left hand side), but also expresses a form of pessimism. The formulation

of Hansen and Sargent (2005) and others with standard Boltzmann-Gibbs-Shannon entropy would set

11As I focus on recursive representations – apart from section A.3 of the appendix where I turn to a sequential formulation

– I generally refer to a conditional distribution as a model for brevity instead of calling a model a joint distribution over a

sequence that such a distribution is an element of.
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q to 1, yielding expectations taken with respect to the distorted density p̃(x′,x,a). From the second line

when q > 1, events made more likely under the pernicious distributions they fear are overweighted and

those made less likely underweighted when evaluating the expectation of the continuation value under

the worst case density (the first term in the second line). Quiggin (1982) deems agents pessimistic if

they overweight the probabilities of the worst outcomes on average and if q > 1 agents will overweight

the events in distorted models chosen to minimize their continuation utility. In this sense, I interpret q

as a measure of agents’ pessimism.

The foregoing zero sum game can be reexpressed in terms of expectations calculated under the

escort distribution (see 4) that preserves the law of total probability as12

R (V )(x) = min
g(x′,x)>0∫

g(x′,x)p(x′,x,a(x))dx′=1

Ẽ
[

V (x′)
]

+θ(x)Iq

(

p̃(x′,x,a(x)), p(x′,x,a(x))|x
)

(15)

where

θ(x) = θ+(q−1) Ẽ
[

V (x′)
]

(16)

and

Ẽ
[

f (x′)
] .
=

∫
f (x′)

g(x′,x)q−1 p̃(x′,x,a(x))∫
g(x′,x)q−1 p̃(x′,x,a(x))dx′

dx′(17)

The likelihood ratio g(x′,x) can apparently be interpreted as a distortion to the probability density of the

approximating model where distortions are penalized by their entropy with a nonconstant multiplier.13

This minimization problem weighs two countervailing forces: the decision maker would like to guard

against very painful distortions (those that result in her smallest expected value of her continuation

utility, Ẽ [V (x′)]); but a very pernicious distortion that is easy to distinguish, i.e., is far, from her

approximating model is considered less likely and adds a large entropy contribution to her objective

function (Iq (p̃(x′,x,a(x)), p(x′,x,a(x))|x)), where θ(x′) weights her concern for closeness. Thus, the

decision maker is worried that her misspecification is both pernicious and hard to detect.

For q > 1, the state dependent multiplier weights future states associated with higher continuation

values more strongly; thus, for two competing distorted densities that are equally far from the ap-

proximating model, the density associated with a lower continuation value is penalized relatively less.

Increasing q increases (q−1)Ẽ [V (x′)] which tilts the minimizing agent’s decision further towards per-

12Details can be found in the appendix
13See Hansen (2005) and Maenhout (2004) for state dependent multipliers in continuous time formulations. Whereas the

multiplier here stems from a rearrangement of (14) that follows from the generalized entropy and its axiomatic foundations,

theirs stems from an attempt to restore homotheticity. As I show below, in the homothetic case below, my specification

collapses to EZ preferences, just as they recovered the continuous time EZ formulation with their multiplier.
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nicious distributions relative to the q = 1 case. Increasing q, though, also has a countervailing effect:

it increases the index in relative entropy, thereby increasing the penalty associated with distorting the

probability distribution. Hence changes in q might be interpreted as changes in the shape and not

necessarily size of the space of distorted models that agents consider.

Proposition 3.1. Minimizing Distortion and Risk-Sensitive Operator

For the generalized entropy measure and multiplier, the minimizing probability distortion is given by

g(x′,x) =
expq

(

−1
θV (x′)

)

expq

(

−1
θ R (V )(x)

) =

(

θ− (1−q)V (x′)

θ− (1−q)R (V )(x)

) 1
1−q

(18)

and the risk aggregator, or certainty equivalent, by

R (V )(x) =−θ lnq

[∫
expq

(

−
1

θ
V (x′)

)

p(x′,x,a(x))dx′
]

(19)

=
θ−
[∫

(θ− (1−q)V (x′))
1

1−q p(x′,x,a(x))dx′
]1−q

1−q
(20)

Proof. See the Appendix.

Thus, generalized entropy and its associated distorted probabilities lead to a generalized exponen-

tial transformation governed jointly by the entropic index q and static multiplier θ for the risk aggre-

gator. This contrasts with the standard exponential transformation controlled by the static multiplier

θ that results from HS’s formulation and the power certainty equivalent from EZ.14 The interpretation

of this generalized form follows more readily from the special cases that capture these two specific

preferences to which I turn now.

3.1 Equivalence with Hansen-Sargent Multiplier Preferences

In the q = 1 limit, the standard Kullback-Leibler divergence is used to measure the relative entropy

between models, the multiplier in (16) becomes non state dependent (limq→1 θ(x′) = θ), and the dis-

torted probabilities of (14) and escort distribution in (15) collapse to the distortion under the induced

by the worst-case probability distortion and the model uncertainty specification of HS is recovered

lim
q→1

R (V )(x) =−θ ln

[∫
exp

(

−
1

θ
V (x′)

)

p(x′,x,a(x))dx′
]

(21)

with an exponential certainty equivalent following proposition 3.1 and a minimizing distortion

gHS(x′,x) =
exp
(

−1
θV (x′)

)

exp
(

−1
θR (V )(x)

)(22)

14The certainty equivalent in proposition 3.1 is only homogenous (and then linearly) if θ = 0. As I show below, θ = 0

corresponds to EZ preferences where this homogeneity is well known and q → 1 returns the log-exponential twisting of

HS that generally does not possess homogeneity.
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that tilts the distorted model using the standard exponential function.

This formulation is HS’s aggregator,

R (V )(x)
.
= min

p̃(x′,x,a(x))≥0∫
p̃(x′,x,a(x))dx′=1

E p̃
[

V (x′)|x
]

+θI1

(

p̃(x′,x,a(x)), p(x′,x,a(x))|x
)

= min
p̃(x′,x,a(x))≥0∫

p̃(x′,x,a(x))dx′=1

∫
V (x′)p̃(x′,x,a(x))dx′+θ

∫
p̃(x′,x,a(x)) ln

p̃(x′,x,a(x))

p(x′,x,a(x))
dx′(23)

Both the expectation and the relative entropy are with respect to x′, conditioning on x. In terms of the

likelihood ratio, g(x′,x), and the decision maker’s approximating model, p(x′,x,a(x)), the foregoing

can be reformulated as

R (V )(x)
.
= min

g(x′,x)>0∫
g(x′,x)p(x′,x,a(x))dx′=1

Eg·p
[

V (x′)+θ ln
(

g(x′,x)
)]

= min
g(x′,x)>0∫

g(x′,x)p(x′,x,a(x))dx′=1

∫
V (x′)g(x′,x)p(x′,x,a(x))dx′+θ

∫
p(x′,x,a(x))g(x′,x) lng(x′,x)dx′(24)

From the perspective of (14), the formulation here provides decision makers with uncertainty in

the modelling sense inasmuch as they entertain deviations from their approximating model. As they

use the implied probability distribution of this worst case model, they are not pessimistic in the sense

that they do not over- or underweight the ensuing probability distortions.

3.2 Equivalence with EZ Risk Sensitive Preferences

When θ = 0, the multipliers, the Tsallis q relative entropy is used to measure the discrepancy be-

tween models, the multiplier in (16) becomes proportional to the expected continuation value, and the

distorted probabilities of (14) and escort distribution in (15) maintain a sense of pessimism by over-

weighting events made more likely under the pernicious distributions they fear and a power certainty

equivalent is recovered

R (V )(x)|θ=0 =

[∫
V (x′)

1
1−q p(x′,x,a(x))dx′

]1−q

(25)

To see the equivalence with EZ, recall that their constant elasticity formulation is given by

V (x) = max
a∈A

[

(1−β)u(x,a(x))1−ρ +β

(∫
V (x′)1−γ p(x′,x,a(x))dx′

)
1−ρ
1−γ





1
1−ρ

(26)

where β ∈ (0,1) is the discount factor and, with respect to u(x,a(x)), ρ is the inverse of the intertem-

poral elasticity of substitution and γ the coefficient of relative risk aversion.15 In this case, R (V )(x) is

15Both of these measures are expressed here with respect to the period utility kernel u(x,a(x)) and are misnomers if
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a power certainty equivalent E
[

V (x′)1−γ|x
]

1
1−γ . The preferences in (26) can be rexpressed as16

Ṽ (x)
.
=V (x)1−ρ = max

a∈A
(1−β)u(x,a(x))1−ρ +β

(∫
Ṽ (x′)

1−γ
1−ρ p(x′,x,a(x))dx′

)
1−ρ
1−γ

(27)

In this case, R (V )(x) is a power certainty equivalent E

[

V (x′)
1−γ
1−ρ |x

]
1−ρ
1−γ

.

Backus, Routledge, and Zin (2005, p. 341) restrict 1
1−q

< 1 which translates to q ∈ [−∞,0]∪

[1,∞]. The coefficient of relative risk aversion from (26), γ, is related to q through γ = − q
1−q

or

γ =−q−ρ
1−q

depending on whether the certainty equivalent is taken to be
(∫

V (x′)1−γ p(x′,x,a(x))dx′
)

1
1−γ

or

(∫
Ṽ (x′)

1−γ
1−ρ p(x′,x,a(x))dx′

)
1−ρ
1−γ

. For the former case, values of q ≥ 1 translate to γ ≥ 1. I will

confirm this and provide a measure for risk aversion in the general case in the next section.

Following proposition 3.1, the minimizing distortion associated with EZ preferences is

gEZW (x′,x) =

(

V (x′)

R (V )(x)

)
1

1−q

=

(

V (x′)

R (V )(x)

)1−γ

(28)

a power tilting instead of the exponential tilting of HS preferences. Having this minimizing distortion

will enable me to parameterize their measure of relative risk aversion, γ, in EZ preferences from a

model uncertainty perspective using DEPs.

From the perspective of (15), note that the θ = 0 specification of EZ gives

R (V )(x) = min
g(x′,x)>0∫

g(x′,x)p(x′,x,a(x))dx′=1

Ẽ
[

V (x′)
]

+θ(x)Iq

(

p̃(x′,x,a(x)), p(x′,x,a(x))|x
)

(29)

where θ(x) = (q−1) Ẽ [V (x′)] and

Ẽ
[

f (x′)
] .
=

∫
f (x′)

g(x′,x)q−1 p̃(x′,x,a(x))∫
g(x′,x)q−1 p̃(x′,x,a(x))dx′

dx′(30)

That is the state dependent multiplier becomes proportional to the expected continuation value, anal-

ogously to the continuous time result of Hansen (2005) and Maenhout (2004) that recovers a model

uncertainty foundation of EZ preferences. To interpret (29), note that the minimizing agent chooses an

escort distribution under which the continuation value of the maximizing agent is minimized subject

to the entropy constraint. The entropy constraint has two components: the value of the entropy itself

and the multiplier. The minimizing agent seeks to find a distribution that is close to the approximating

model as measured by (generalized) entropy. Furthermore, the multiplier adds an extra tilt towards

pernicious models: for two models equally far from the approximating model (that hence keep the

u(x,a(x)) 6=C(x), where C(x) is the agent’s current consumption. See especially, Swanson (2012) and Swanson (2018) for

measures of relative risk aversion with alternative period utility kernels and under recursive preferences. I maintain this

misnomer here for expositional expediency.
16If ρ > 1, set Ṽ (x)

.
=−V(x)1−ρ and ũ(x,a(x))1−ρ .

=−u(x,a(x))1−ρ. See Swanson (2018) for details.
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value of entropy constant), the minimizing agent would select the more pernicious one (i.e., the one

that leads to the smaller expected continuation value), but for (g > 1) this more pernicious model is

associated with a smaller multiplier (θ(x)), allowing the agent to further twist the worst case away

from the approximating model towards even more pernicious distributions.

Yet this tendency towards ever more pernicious distributions is attenuated by the escort distribution

itself as is most easily seen from the perspective of (14). Note that here the θ = 0 specification of EZ

gives

R (V )(x) = min
g(x′,x)>0∫

g(x′,x)p(x′,x,a(x))dx′=1

∫
V (x′)g(x′,x)q−1 p̃(x′,x,a(x))dx′(31)

To interpret this, note that if q = 1, the minimizing agent would choose an infinitely pernicious dis-

tortion p̃(x′,x,a(x)) to minimize R (V )(x). For q > 1, this tendency is counterbalanced by the over-

weighting through q, as making pernicious events more likely increases the value under the integral

by increasing g(x′,x)
.
= p̃(x′,x,a(x))

p(x′,x,a(x))
. Recall that q can be interpreted as agents’ pessimism: increases

in q lead agents to attribute a higher probability to a given pernicious distortion and to more strongly

robustify their actions against this distortion, thereby reducing its impact on their continuation value.

While θ= 0 might appear to be a pathological case without an entropy constraint as viewed through

(14), the perspective from (15) emphasizes that an entropy constraint remains and that the multiplier

is simply linked to the continuation value. Alternatively from the perspective of (14), the preference

of EZ can be interpreted as a zero sum game with uncertainty defined via Quiggin’s (1982) and Dow

and Werlang (1992) subadditive probabilities that lead to overweighting of undesirable outcomes.

In any case, this indicates that the generalized uncertainty preferences conflates two forms of un-

certainty, the pessimism associated with overweighting probabilities and the amount of uncertainty

through the entropy constraint.

3.3 Risk Aversion

A central goal of this paper is to provide a more general model uncertainty foundation to recursive

preferences, especially the preferences of EZ. It is, however, just as instructive to iterate backwards and

determine the implied attitudes towards risk provided by model uncertainty. To link the generalized

model uncertainty to concepts of risk, I will examine the risk-related properties of the generalized

preferences in a static setting.

Abusing notation to minimize clutter by suppressing the dependence on x, the current state, and
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recycling notation by relabeling the future state, x′, with x, the risk aggregator from proposition 3.1 is

R (V ) =−θ lnq

(∫
expq

(

−
1

θ
V (x)

)

p(x)dx

)

(32)

and its minimizing density distortion is

g(x) =
expq

(

−1
θV (x)

)

expq

(

−1
θR (V )

)(33)

Backus, Routledge, and Zin (2005) calculate the risk aversion with a Taylor expansion of several

preferences in a two state equiprobable setup. Accordingly, let there be two states, with outcomes

x1 = 1+σ and x1 = 1−σ for positive σ. The certainty equivalent is

R (V ) =−θ lnq

(

0.5expq

(

−
1+σ

θ

)

+0.5expq

(

−
1−σ

θ

))

(34)

which I will evaluate locally around σ = 0 out to second order17

R (V )≈ R (V )
∣

∣

∣

σ=0
+

∂R (V )

∂σ

∣

∣

∣

σ=0
+

1

2

∂2R (V )

∂σ2

∣

∣

∣

σ=0
= 1−

q

θ+q−1

σ2

2
(35)

As there is no term linear in σ, risk aversion is second order here. This is not surprising as the

generalized exponential risk sensitive preferences are smooth, lacking the kinks responsible for first

order risk aversion, see, e.g., Epstein and Zin (1990). The terms

γGen. Unc. =
q

θ+q−1
, ,γEZ = γGen. Unc.

∣

∣

∣

θ=0
=−

q

1−q
, ,γHS = γGen. Unc.

∣

∣

∣

θ=0
=−

q

1−q
(36)

provide measures of risk aversion. In the EZ case, through comparison with (26) this can be seen to

correspond to the coefficient of relative risk aversion.18 In the HS case, this corresponds to Hansen

and Sargent (2007) and Tallarini (2000).

Returning to the general case in (36), the measure of risk aversion is decreasing in θ for q > 0

∂γGen. Unc.

∂θ
=−

q

(θ+q−1)2
, ,

∂γGen. Unc.

∂q
=−

1−θ

(θ+q−1)2
(37)

and decreasing in q for θ less than one, but increasing for θ greater than one.

Alternatively for EZ preferences according to (26), the recursive problem can be reexpressed in

terms of a linear combination of a period utility function and a power certainty equivalent

V (x) =

[

(1−β)u(x,a(x))1−ρ +β

(∫
V (x′)1−γ p(x′,x,a(x))dx′

)
1−ρ
1−γ





1
1−ρ

(38)

Ṽ (x)
.
=V (x)1−ρ = (1−β)u(x,a(x))1−ρ+β

(∫
V (x′)

1−γ
1−ρ p(x′,x,a(x))dx′

)
1−ρ
1−γ

(39)

where ρ is the inverse of the intertemporal elasticity of substitution and γ is the coefficient of relative

risk aversion. Comparing with the power certainty equivalent of section 3.2, it follows that 1−q= 1−ρ
1−γ

17Details of the calculations can be found in the online appendix.
18See section 3.2.
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or that EZ’s coefficient of risk aversion can be mapped through q and ρ as

γEZ alternative =
q−ρ

q−1
(40)

which is
−ρ
q−1

less than the measure provided by (36).19

3.4 Asset Pricing

A key implication of these preferences (HS, EZ, and generalized uncertainty) is their asset pricing

implications as implied by their pricing kernels. I will decompose these kernels (or stochastic discount

factors) following the literature into the market prices of risk and uncertainty and a third component

– the market price of pessimism – that arises through the entropic index q. To further understand the

mechanisms at work, I will explore their general implications for the equity premium puzzle intuitively

via log-normal approximations.20

Consider a household seeking to maximize the following

Vt = u(Ct ,•)−βθ lnq

(

Et

[

expq

(

−
1

θ
Vt+1

)])

(41)

where Vt is the household’s lifetime discounted utility, u(Ct ,•) its period utility function that depends

at least on consumption Ct , and β ∈ (0,1) the household’s subjective discount factor.

The likelihood ratio between the distorted and approximating models is given by

gt+1 =
expq

(

−1
θVt+1

)

Et

[

expq

(

−1
θVt+1

)](42)

The household’s stochastic discount factor or pricing kernel is given by

Mt+1
.
=

∂Vt/∂Ct+1

∂Vt/∂Ct

=

∂Vt

∂Vt+1

∂Vt+1

∂Ct+1

∂Vt

∂Ct

(43)

with

∂Vt

∂Ct

= uC(Ct ,•),
∂Vt+1

∂Ct+1
= uC(Ct+1,•)(44)

and

∂Vt

∂Vt+1
= β

(

expq

{

−1
θVt+1

}

Et

[

expq

{

−1
θVt+1

}]

)q

= βg
q
t+1 = βgt+1g

q−1
t+1(45)

combining yields the final form of the pricing kernel

Mt+1 = β
uC(Ct+1,•)

uC(Ct ,•)
gt+1g

q−1
t+1 = ΛR

t+1ΛU
t+1ΛP

t+1(46)

where ΛR
t+1

.
= β

uC(Ct+1,•)
uC(Ct ,•)

is the stochastic discount factor under expected utility (θ = ∞), ΛU
t+1

.
= gt+1

19Additional measures of risk aversion based on wealth gambles following Swanson (2018) can be found in the online

appendix.
20In the section that follows, I will use nonlinear methods and examine their implications for asset prices and the

macroeconomy in two specific models.
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is the change of measure under the distorted model, and ΛP
t+1

.
= g

q−1
t+1 captures the direct effect21 of the

entropic index.

Note that if q = 1, ΛP
t+1 is equal to unity and the model uncertainty concerns collapse to HS (see

section 3.1 above). For q > 1, agents overweight (underweight) states that have become more (less)

likely under distorted models when pricing assets, embedding a form of pessimism into a non-unity

ΛP
t+1. Thus, along with Hansen and Sargent’s (2007), Bidder and Smith’s (2012), and others’ inter-

pretation of stdt

(

ΛR
t+1

)

/Et

[

ΛR
t+1

]

and stdt

(

ΛU
t+1

)

as the market prices of risk and model uncertainty,

respectively, I interpret stdt

(

ΛP
t+1

)

/Et

[

ΛP
t+1

]

as the market price of pessimism.

For EZ’s power certainty equivalent, θ = 0 (see section 3.2 above) all three components of the

stochastic discount factor remain. As risk aversion is related inversely to q in this case, see section 3.3,

an increase in risk aversion is associated with a decrease in pessimism, as ΛP
t+1 approaches unity.

To understand the consequences of the different preference specifications intuitively, it is instruc-

tive to consider the equity premium. The fundamental asset pricing equation gives

1 = Et [Mt+1Rt+1] , 1 = Et [Mt+1]R
f
t(47)

where Rt is the return on a risky asset and R
f
t is the return on a riskless asset. Log-normal approxima-

tions of the foregoing, where lowercases indicate logs and σ’s (co)variances, yield

E
[

rt+1 − r
f
t

]

=−
1

2
σr −σrm(48)

Applying the decomposition in (46) yields the following expression for the equity premium

E
[

rt+1 − r
f
t

]

=−

(

1

2
σr +σrλR +σrλU +σrλP

)

=−

(

1

2
σr +σrλR +qσrλU

)

(49)

The last equality follows as σrλP = (q − 1)σrλU , and this would seem to show that the additional

pessimism term is begging the question: The market price of pessimism simply scales up the impact

of the market price of uncertainty through q, so clearly we can simply increase q to match the equity

premium for a negative covariance σrλU . However, changing q, also changes the market price of

uncertainty itself by altering the certainty equivalent in proposition 3.1. Thus if an increase in q is

associated with a sufficiently large increase in the covariance σrλU , then an increase in q can lead to an

increase in the composite qσrλU thereby decreasing the equity premium. Indeed a general conclusion

from the literature22 is that increasing risk aversion with EZ will increase the equity premium. From

section 3.3, risk aversion is however decreasing in q. Thus, increasing q does not simply scale up

the effect of the market price of uncertainty and indeed the ensuing change in the market price of

21The entropic index, as was shown above, enters into the change of measure g.
22See, e.g., Table 1 from Weil (1989) or the review in section 1.3 of Donaldson and Mehra (2008).
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uncertainty, at least in the EZ case, moves the equity premium in the opposite direction of q.

4 Business Cycles, Asset Prices, and Model Uncertainty

Here I apply the general model uncertainty framework I have derived above to two models of asset

pricing. The first is an endowment economy with long-run risk, typically examined in finance with

EZ preferences and my generalized model uncertainty allows me to assess the model (and especially

its conspicuously low level of risk aversion) in terms of DEPs - a measure of the degree of model

uncertainty entertained by agents. I find that the exponential certainty equivalent of HS preferences

and the power certainty equivalent of EZ preferences imply similar maximum Sharpe ratios for a given

DEP, despite their associated worst case models differing substantially. Surprisingly, the low level of

risk aversion under EZ preferences is actually associated with a high degree of model uncertainty. The

generalized uncertainty is able to rectify a low degree of model uncertainty with large Sharpe ratios by

increasing the pessimism that differentiates EZ from HS preferences.

I then turn to a production economy - that of Tallarini (2000) - and examine the asset pricing and

macroeconomic consequences of the different forms of model uncertainty. Unlike the endowment

economy, households can endogenously determine their consumption and savings plans. I find that all

three preference forms are again able to reconcile asset pricing facts in this environment. EZ and HS

preferences again demonstrate a close relationship in terms of maximum Sharpe ratios for given levels

of model uncertainty, though they both require substantial amounts of uncertainty to match empirical

equity premia. The generalized preference approach with heightened pessimism is, however, able to

match the empirical Sharpe ratio with a conservative level of model uncertainty.

4.1 Data and Solution Method

The calibration of the model will focus on matching the first two moments of key macroeconomic

indicators and the Sharpe ratio (see table 1) for the U.S. post war period.

The empirical Sharpe ratio and the its theoretical maximum for a given model
std(mt+1)
E[mt+1]

that mea-

sures the excess return the household demands for bearing an additional unit of risk can be related

through a Cauchy-Schwarz inequality and the fundamental asset pricing equations (47) as
∣

∣

∣
E
[

Rt+1 −R
f
t

]∣

∣

∣

std
(

Rt+1 −R
f
t

) ≤
std (mt+1)

E [mt+1]
(50)
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Business Cycle Data

Variable Mean Std. Dev. %
Relative Autocorrelations Cross Corr.

Std. Dev. 1 2 3 w∆ lnYt

∆ lnYt 0.004 0.991 1.000 0.380 0.266 0.045 1.000

∆ lnCt 0.005 0.566 0.571 0.255 0.201 0.069 0.531

Asset Return Data

Return Mean Std. Dev.

R 2.13 8.26

R f 0.26 0.63

rp 1.87 8.27 Sharpe Ratio 0.2261

All returns are measured as net real quarterly percentage returns. See the online

appendix for details on the series used.

Table 1: Empirical Macroeconomic and Asset Pricing Moments, 1948:2-2012:4

with the Sharpe ratio on the left hand side being empirically observable and given in the lower half of

table 1. Hansen and Jagannathan (1997) extend the maximum Sharpe ratio point restriction on pricing

kernels of the right hand side to a parabola inside which pairs of std (mt+1) and E [mt+1] must reside

to be consistent with (a vector) of risky assets and the riskless bond.

In calibrating the parameters q and θ, I will proceed in the spirit of Hansen and Sargent (2007) and

examine DEPs. A value of 0.5 for the DEP indicates that the two models (approximating and worst-

case) are indistinguishable, as the agents have a fifty-fifty chance of correctly identifying the model

used to generate the simulations. Barillas, Hansen, and Sargent (2009) argue for a DEP of between

0.15 and 0.2 as lower bound. In general, I will take a conservative perspective and target a DEP of

0.25. For the HS certainty equivalent, this follows Hansen and Sargent (2007) exactly and the DEP

pins down the multiplier on the entropy constraint θ. For the EZ specification, θ = 0 and targeting a

DEP pins down the only free parameter q, the entropic index. For the generalized specification, I have

two free parameters, q and θ, so the DEP will not pin the pair down uniquely. I will focus on the pair

that also matches the edge of the Hansen and Jagannathan (1997) bound, which can be interpreted as

providing the entropic index q that matches the equity premium for a θ that yields a DEP of 25%.

One can object to the fact the econometrician uses the actual likelihood ratio g when calculating

the DEPs while the agents in the model overweight gq pernicious distributions when forming expecta-

tions as perhaps overstating the results for the generalized model uncertainty case. But note that this

objection would then also apply to the EZ specification that operates solely through q: the approx-

imate equivalence with HS’s specification in regards to the maximum Sharpe ratio and DEPs I will
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depict in figures 5 and 6 rests likewise on this discord between the measures of the agents and the

econometrician.

To solve the models, I use perturbation following Bidder and Smith (2012), but use the nonlinear

moving average policy function or pruning of Lan and Meyer-Gohde (2013c) to maintain the stability

of the model under nonlinearity.23 As proposed by Bidder and Smith (2012), I first generate simu-

lations (the length of which will match the length of the post war U.S. data series used) using the

perturbation solution of the model and then perform a likelihood ratio test over the agents’ approxi-

mating model p and the distorted model p̃ using the change of measure directly. Second, I generate

simulations from the distorted model using importance sampling and perform a symmetrical likelihood

test to calculate the DEPs.24

4.2 Endowment Economy with Long Run Risk

In this section, I apply the generalized entropy constraint to an endowment economy with long-run

consumption risk. Bansal and Yaron (2004) use EZ preferences and show that long run risk can

resolve the equity premium puzzle with reasonable values of risk aversion. Specifically, I follow

Bansal, Kiku, and Yaron’s (2016) specification that allows for correlation between the consumption

and dividend processes and take their quarterly calibration as a starting point for the analysis.

The economy is populated by an infinitely lived household. Under the recursive preferences from

EZ as specified in (26)

Vt =

(

(1−β)C
1−ρ
t +βEt

[

V
1−γ

t+1

]
1−ρ
1−γ

) 1
1−ρ

→ Ṽt = (1−β)C
1−ρ
t +βEt

[

Ṽ
1−γ
1−ρ

t+1

]

1−ρ
1−γ

(51)

The transformation on the right is discussed surrounding equation (27) and further details can be found

in Swanson (2018). Consumption will be nonstationary and exogenously given.25

23See Lan and Meyer-Gohde (2013b) for a comparison of alternate, so-called pruning, algorithms to deliver this stability.

An additional advantage to using a nonlinear moving average or pruning algorithm is that closed-form theoretical moments

are available, see Lan and Meyer-Gohde (2013a) and Andreasen, Fernández-Villaverde, and Rubio-Ramı́rez (2017), which

were used to initialize the particle filters.
24As the particle filter with 1,000,000 particles still suffers from sampling variation when calculating the likelihood

tests for high and low DEPs, I follow Bidder and Dew-Becker (2016) and Bidder and Smith (2018) and calculate the log-

likelihood ratios directly from the perturbation approximated changes of measure g. This eliminates the sampling variation

and computational burden associated with the particle filter, but assumes that the entire state vector is observable when

comparing models. I found that this only slightly reduced the DEPs compared with calculations using the particle filter

conditional on a subset of the models’ variables (i.e., consumption).
25 Note from assumption 16, the multiplier on the entropy constraint is a function of continuation utility: expressing the

problem with the generalized risk sensitive operator before stationarizing would imply a trend in the multiplier. Essentially,

I am stationarizing the multiplier along with the rest of the model by applying the operator afterwards. This follows from

Cagetti, Hansen, Sargent, and Williams (2002), who use a stochastically discounted entropy constraint. Details can be
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The household’s lifetime utility function is expressed recursively as

vt =(1−β)c
1−ρ
t +βR

(

vt+1w
1−ρ
t+1

)

= (1−β)c
1−ρ
t −βθ lnq

{

Et

[

expq

{

−
1

θ
vt+1w

1−ρ
t+1

}]}

(52)

with β ∈ (0,1) the discount factor, vt the value function at the optimum, ct
.
= Ct

Wt
detrendend con-

sumption, Wt the detrending factor, and wt
.
= Wt

Wt−1
is gross growth rate. The fundamental asset pricing

equations in (47) price the return on risky asset Rt
.
= exp(∆dt) ∗ (1+PDt)/PDt−1 that pays out divi-

dends that grow at the rate ∆dt with PDt the price dividend ratio and the R
f
t is the risk-free rate. The

stochastic discount factor or pricing kernel (see section 3.4), Mt+1, is given by26

Mt+1 = βe−ρ∆ct+1





expq

{

−1
θvt+1e(1−ρ)∆ct+1

}

Et

[

expq

{

−1
θvt+1e(1−ρ)∆ct+1

}]





q

(53)

Consumption and dividend growth are given by the following long-run risk specification

∆ct = µc + xt−1 +σt−1εc
t(54)

∆dt = µd +φxt−1 +σt−1σd

[

(1−ρdc)
1
2 εd

t +ρdcεc
t

]

(55)

xt = ρxxt−1 +σt−1σxεx
t(56)

σ2
t = σ̄2 +ρσ

(

σ2
t−1 − σ̄2

)

+σσεσ
t(57)

where xt is the long run growth process and εc
t , εd

t , and εx
t are iid standard normals.

The parameterization follows Bansal, Kiku, and Yaron’s (2016) quarterly, post-war estimates, but

is calibrated to match the standard deviation and first autocorrelation of ∆C and the means and standard

deviations of R f and rp in table 1.27 Comparing (51) with (25), the values of q and ρ (the entropic

index and inverse IES respectively) are related to γ via γ = (q− ρ)/(q− 1),28 which gives a value

of relative risk aversion equal to 5.72 for the calibrated values of q = 1.119 and ρ = 0.438. I then

calculate the DEP associated with this calibration, which is equal to 4.25%, far below the conservative

measure of 25% that I adopted above. For the HS specification, I set q = 1 and calculate θ to match

this DEP (here θ = 5.71). For the generalized model uncertainty case, I find the q and θ pair (here

q = 2 and θ =−6.29)29 that generates a DEP of 25% and a maximum Sharpe ratio of roughly .184 on

the edge of the Hansen and Jagannathan (1997) bounds.

found in the online appendix.
26See the online appendix for a detailed derivation.
27See the online appendix for the complete parameterization.
28See the discussion following (25).
29Though a negative θ might seem surprising, recall from section 3 that the multiplier on the entropy is a compound that

depends on θ as well as the continuation value. In other words, a negative θ need not imply a negative θ(x).
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4.2.1 Long-Run Risk and the Worst Case

Approximating Model Generalized Uncertainty

Common to all specifications q = 2, θ =−6.29→DEP=25%

Variable Mean % Std. Dev. % Autocorr. Corr. w/ xt Mean % Std. Dev. % Autocorr. Corr. w/ xt

∆ lnct 0.500 0.566 0.255 0.503 0.321 0.556 0.226 0.4711

xt 0 0.287 0.990 1 -0.177 0.266 0.989 1

∆ lndt 0.200 3 0.114 0.336 -0.364 2.705 0.099 0.311

σt 2.370E-03 1.243E-3 0.995 0.000 2.386E-03 1.234E-3 0.994 -0.096

EZ Preferences HS Preferences

θ = 0, q = 1.119→DEP=4.25% q = 1, θ = 5.71 →DEP=4.25%

Variable Mean % Std. Dev. % Autocorr. Corr. w/ xt Mean % Std. Dev. % Autocorr. Corr. w/ xt

∆ lnct 0.171 0.552 0.213 0.458 0.301 0.565 0.235 0.482

xt -0.324 0.258 0.988 1 -0.194 0.278 0.990 1

∆ lndt -0.843 2.700 0.093 0.304 -0.428 2.752 0.101 0.317

σt 2.388E-03 1.237E-3 0.994 -0.223 2.450E-03 1.189E-3 0.994 -0.117

Table 2: Model Moments for the Approximating and Worst-Case Models of the Endowment

Economy

I begin first with the moments of the models and those of their worst cases characterized by gt+1,

contained in table 2. 30 Under all three specifications, agents fear a worst case associated with lower

mean consumption growth, consistent with the literature on HS preferences (see, e.g., Barillas, Hansen,

and Sargent (2009)). Likewise all three models posit a worst case model with a higher mean volatility

of exogenous innovations. This does not translate to higher volatility in worst case consumption growth

due to its reduced correlation with the long run risk process. Comparing HS and EZ worst cases,

both with the same DEP of 4.25%, the reduction in mean consumption growth is larger in the latter.

This is compensated for under HS preferences with higher relative volatility and autocorrelation in

consumption growth, which stems from the larger role they assign to the long run risk process in the

worst case relative to EZ. The generalized uncertainty preferences introduced above with q = 2 (the

reason for this value will be apparent in when I turn to asset pricing in the next section), likewise

induces fears of heightened volatility and reduced means. In contrast to the HS and EZ preferences

that were calibrated to match the 4.25% DEP commensurate with Bansal, Kiku, and Yaron’s (2016)

calibration of the EZ preferences, the generalized uncertainty preferences were set to induce a DEP of

30Moments for the worst cases of EZ and my generalized preferences under the g
q
t+1 measure can be found in the online

appendix. The differences are quantitative and not qualitative to those presented here.
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25%. Hence, it is not surprising that the deviations from the approximating model are not as large in

this case.

4.2.2 Asset Pricing Implications

Figure 2 traces out the maximum Sharpe ratios and the associated DEPs for HS (red) and EZ (blue)

preferences. As discussed in section 3.4 the pricing kernel for q 6= 1 multiplies the market price of

risk with gt+1g
q−1
t+1 , where gt+1 is the change of measure induced by the worst case (in the context

of asset pricing, the market price of model uncertainty) and the term g
q−1
t+1 that captures the over-

/underweighting of outcomes made more/less likely under distorted densities (which captures pes-

simism in the sense of Quiggin (1982)). This is a discord here in the sense that an econometrician

might be calculating the DEPs implied by gt+1, whereas the agent could also be thought of as pos-

sessing concerns about the potentially larger (for q > 1) distortion implied by gt+1g
q−1
t+1 = g

q
t+1. To

investigate this, figure 2 also contains the maximum Sharpe ratios and the associated DEPs associated

with the distortion g
q
t+1 for the EZ preferences (green).
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Figure 2: Maximum Sharpe Ratio and DEPs for the Endowment Economy

Red: HS (g); Blue: EZ (g); Green: EZ (gq)

As can be seen in the figure, HS (red) and EZ (blue) preferences (both under their respective gt+1’s)

trace out a very similar relationship between the maximum Sharpe ratios and DEPs, implying that the

difference between the exponential and power certainty equivalents derived from these two preferences

are minimal in terms of their asset pricing implications, so long as they are parameterized by DEPs.

The picture is changed, however, if one focuses on the distortion implied by combining the agent’s
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model uncertainty and pessimism contained in the distortion g
q
t+1 for EZ preferences. Here the green

curve traces out a lower maximum Sharpe ratio for a given DEP.

The decomposition of the pricing kernel from section 3.4 can shed some light on the sources of

the different preferences’ abilities to match the maximum Sharpe ratio. Despite the general similarity

in the mappings under both EZ and HS between the maximum Sharpe ratios and DEPs, at such a low

DEP (4.25%) as implied by the calibrated EZ specification, HS preferences display a somewhat lower

maximum Sharpe ratio. The negative correlation between the market price of risk and the market price

of model uncertainty account for why the two sum to a larger variance than that of the kernel under

HS preferences and stems from the different correlations between the market price of uncertainty and

long run risk. With the value of q at 1.119, the role of the market price of pessimism (defined as the

market price of model uncertainty to the q−1’th power) is necessarily small, contributing only a little

more than one-tenth of the variance contributed by the market price of model uncertainty under EZ

preferences. Under generalized model uncertainty, the market prices of risk and uncertainty contribute

equally to the variance of the kernel (this follows by definition for the case of q = 2 considered here:

ΛU
t+1 = gt+1 and ΛP

t+1 = g
q−1
t+1 ).

Model σM σR
Λ σU

Λ σP
Λ ρ

(

M,ΛR
)

ρ
(

ΛU ,X
)

HS (q = 1) 0.236 0.002 0 0.237 -0.080 0.127

EZ (θ = 0) 0.267 0.002 0.028 0.239 0.092 -0.086

Gen. Unc. 0.184 0.002 0.092 0.092 0.115 -0.134

See the main text.

Table 3: Pricing Kernel Decomposition for the Endowment Economy

As the role of pessimism is tied positively to the entropic index q under EZ preferences and the

maximum Sharpe ratio for a given level of model uncertainty is roughly equivalent to that implied by

HS preferences, one might suspect that decreasing q (i.e., increasing risk aversion) serves to increase

the amount of model uncertainty under EZ preferences while holding the role of pessimism constant

(recall the discussion in section 3.4, a decrease in q reduces the exponent in ΛP
t+1

.
= g

q−1
t+1 , but also

changes gt+1 itself, which one would expect would increase based on the intuition of a decrease in q

going hand in hand with an increase in risk aversion). In contrast, table 4 shows that the proportion

of the variance of the pricing kernel under EZ preferences from the market price of pessimism is

decreasing in risk aversion (increasing in q). Thus EZ preferences and low levels of risk aversion

attribute a substantial role to pessimism from the model uncertainty I presented above.
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q γEZ = q/(q− 1) γEZ alternative = (q−ρ)/(q− 1) σM 100
σR

Λ
σM

100
σU

Λ
σM

100
σP

Λ
σM

1.1 11 6.615 0.343 0.719 9.018 91.038

1.25 5 3.246 0.116 2.132 19.940 80.003

1.5 3 2.123 0.068 3.655 33.273 66.596

2 2 1.561 0.045 5.436 49.846 49.846

Table 4: Risk and Pessimism under EZ in the Endowment Economy

Table 5 displays the role of the entropic index q under generalized model uncertainty while holding

the DEP constant at 25%. Increasing q, while holding the DEP constant, increases the maximum

Sharpe ratio and moving inside the Hansen and Jagannathan (1997) bounds just past q =.31 The

q = 2 specification that gives equal weight to the market price of model uncertainty and pessimism is

associated with a maximum Sharpe ratio of 0.184, not far from the empirical Sharpe ratio of 0.2261

in table 1. One the one hand, this specification attributes a conservative value to model uncertainty

– recall that under HS and EZ preferences a DEP of less than 5% was necessary to approach the

empirical Sharpe ratio. Yet on the other, this implies that agents’ pessimism lead them to subjectively

double the probability of events made more likely under the distorted distribution.

q = 1 1.1 1.2 1.3 1.4 1.5 1.75 2 2.25 2.5

MSR 0.095 0.096 0.099 0.103 0.112 0.121 0.1643 0.184 0.219 0.235

θ is adjusted to keep the DEP at 0.25.

Table 5: The Entropic Index and the Maximum Sharpe Ratio for Generalized Model Uncertainty in

the Endowment Economy

The endowment economy, while informative, denies the maximizing agent a decision margin, with

which she can react to the different environments of uncertainty, leaving her only to price the risks,

uncertainty, and pessimism that confront her. Following Cochrane (2008, p. 295), one would expect

agents to try and smooth out the distortions the fear when confronted with these pernicious distortion

and, placing herself in a potentially different situation with a different valuation of the risks, uncertain-

ties, and pessimism with which she is confronted. To address this, I will examine the robustness of the

results to a production setting, where consumers try to do just that.

31See the online appendix.
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4.3 Production Economy with Stochastic Productivity

In the endowment economy, agents take their consumptions streams as given and the different prefer-

ence specifications lead to different valuations of theses streams. To analyze the question as to whether

and how agents might choose different consumption streams to optimally robustify their decisions to

the different forms of uncertainty they face requires that these consumption streams be chosen endoge-

nously. To do so, I apply the generalized entropy constraint to a stochastic neoclassical growth model

with a preference for robustness. The goal here is to see whether the asset pricing results from the

endowment economy carry over when agents can react to their environment without sacrificing the fit

to the macroeconomy.

I follow Tallarini (2000) and examine a neoclassical production model with consumption and labor

margins and follow his parameterization closely (see the online appendix for details). The economy

is populated by an infinitely lived household that optimizes over consumption Ct and labor supply Nt

with the period utility function

Ut = lnCt +ψ ln(1−Nt)(58)

subject to the standard budget constraint (see the online appendix).

Output Yt is produced under perfect competition using the labor augmented Cobb-Douglas tech-

nology Yt = Kα
t−1

(

eZt Nt

)1−α
and Kt−1 is the capital stock. Zt is a stochastic productivity process and

α ∈ [0,1] the capital share. Productivity is assumed to be a random walk with drift

at ≡ Zt −Zt−1 = a+ εz,t , εz,t ∼ N (0,σ2
z )(59)

with εz,t the innovation to Zt . The endogenous variables are detrended with e−Zt .

The household’s lifetime utility function is expressed recursively as32

vt = lnct +ψ ln(1−Nt)−βθ lnq

{

Et

[

expq

{

−
1

θ

(

vt+1 +
1

1−β
at+1

)}]}

(60)

with β ∈ (0,1) the discount factor and vt the value function at the optimum. The first of household’s

two optimality conditions is the intratemporal labor supply/productivity condition equalizing the utility

cost of marginally increasing labor supply to the utility value of the additional consumption

ψ

1−Nt

=
1

ct

wt(61)

and the second is the intertemporal Euler equation, rearranged as the first equation in (47) where

Rt
.
= RRK

t +1−δ is the return on capital and mt+1, the stochastic discount factor of the household or

32See footnote 25 for a discussion of detrending.
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pricing kernel (see section 3.4), is given by33

mt+1 = β
ct

ct+1
e−at+1





expq

{

−1
θ

(

vt+1 +
1

1−β
at+1

)}

Et

[

expq

{

−1
θ

(

vt+1 +
1

1−β
at+1

)}]





q

(62)

4.3.1 Macroeconomic and Asset Pricing Implications

I begin by comparing the business cycle properties of model uncertainty following HS with q = 1 and

the risk sensitive recursive utility specification of EZ parameterized via model uncertainty with θ = 0,

before turning to the case of the generalized model uncertainty. I then compare the specifications’

ability to match asset pricing facts, here using the maximum Sharpe ratio, for varying DEPs. This

reiterates the close relationship between EZ and HS preferences from the endowment economy, noting

again the potential discord between the agent’s and the econometrician’s change of measure. Under

generalized model uncertainty, increasing the entropic index q can put the model’s asset pricing pre-

dictions inside the Hansen and Jagannathan (1997) bounds while maintaining a conservative DEP of

0.25.

The parameters q and θ are set to achieve a DEP of 0.25 between the approximating and worst case

models of each specification. For the generalized model uncertainty case, q is set to 2 (set to bring

the maximum Sharpe ratio to the bounds of the Hansen and Jagannathan (1997) bounds for a DEP of

25%) and θ is then set to match the DEP. The volatility of productivity growth is adjusted under each

preference specification such that the volatility of consumption growth matches its empirical target in

table 1. The approximating models for all three specifications do a comparably good job in matching

the data, despite their different uncertainty specifications, consistent with what Backus, Ferriere, and

Zin (2015) deem the “Tallarini property”.

The business cycle moments for all three specifications with DEPs equal to 25% are contained in

table 11, with the associated approximating models in the left and the worst cases in the right panels. In

contrast to the endowment economy, agents choose their consumption streams endogenously. To facil-

itate comparability, the approximating models are calibrated such that agents choose consumption with

identical means and standard deviations. As can be seen in the table, this requires different assump-

tions regarding the mean and volatility of productivity, especially for generalized model uncertainty

preferences, where agents robustify their consumption decisions more strongly due to the overweight-

ing of pernicious probability distributions under q = 2. That is, their precautionary motive is stronger,

33See the online appendix for a detailed derivation.
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HS Preferences

q = 1, DEP=25%→ θ = 15

Approximating Model Worst-Case Model

Variable Mean % Std. Dev. % Autocorr. Mean % Std. Dev. % Autocorr.

∆ lnYt 0.400 1.029 0.009 0.286 1.030 0.008

∆ lnCt 0.400 0.566 0.085 0.286 0.564 0.084

at 0.000 1.194 0.000 -0.114 1.192 0.000

EZ Preferences

θ = 0, DEP=25%→ q = 1.082

Approximating Model Worst-Case Model

Variable Mean % Std. Dev. % Autocorr. Mean % Std. Dev. % Autocorr.

∆ lnYt 0.400 1.023 0.009 0.298 1.026 0.007

∆ lnCt 0.400 0.566 0.084 0.298 0.565 0.080

at 0.000 1.189 0.000 -0.102 1.190 -0.002

Generalized Uncertainty

q = 2, DEP=25%→ θ = 132.15

Approximating Model Worst-Case Model

Variable Mean % Std. Dev. % Autocorr. Mean % Std. Dev. % Autocorr.

∆ lnYt 0.400 1.233 0.008 0.272 1.235 0.006

∆ lnCt 0.400 0.566 0.101 0.272 0.564 0.120

at 0.000 1.347 0.000 -0.128 1.345 0.001

For all three specifications, σz is adjusted to match the empirical volatility of ∆ lnCt in

the approximating model and the free parameter in the preference specification to yield a

DEP of 25%.

Table 6: Business Cycle Moments for the Approximating and Worst Case Models in the Production

Economy

leading them to more strongly smooth consumption, which in turn necessitates a lower mean and more

volatile productivity process to result in the volatility of consumption growth as measured in the data

in table 1.

The moments of the worst cases under the gt+1 measures can be found in the right panels of table

11. All three specifications agree on a reduction in mean consumption growth, achieved through a

reduction in the mean productivity growth process of the worst cases. While the mean consumption

growth rate under EZ is less than under HS, the increase in the volatility of production is larger under

EZ relative to its worst case. This follows from the increase in production growth volatility whereas HS

finds a decrease in the worst case. and an increase its volatility as properties of the worst case. Under

generalized model uncertainty with q = 2, I find the most substantial reduction in mean consumption

growth reiterating the stronger precautionary motive noted above in the worst case with an increase

in production growth volatility resulting despite the decrease in productivity growth volatility. For
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the g
q
t+1 measures for EZ and generalized uncertainty (see the online appendix for the tables), the

worst case for EZ preferences further reduces the feared mean and increases the autocorrelation of

consumption growth, bringing them nearly in line with the HS version in table 11. The decrease in

mean consumption growth under this g
q
t+1 measure is substantial for the q = 2 generalized uncertainty

preferences, consistent with the high amount of pessimistic overweighted implied by the value of q.

Using the maximum Sharpe ratio to assess the asset pricing implications for varying DEPs essen-

tially mirrors the results from the endowment economy.34 There is a close relationship between EZ and

HS preferences if the DEPs of the latter are calculated using only the margin of model uncertainty. In

this case, both specifications close about half of the gap to the Hansen and Jagannathan (1997) bounds

while maintaining a conservative DEP of 0.25. Likewise confirmed from the endowment economy is

that using the combined distortion g
q
t+1 for EZ preferences generates a much lower maximum Sharpe

ratio for a given DEP than under the HS case, underlining the caveat that this close relation hinges on

using only the change of measure gt+1 associated with EZ preferences. The two parameter general-

ized model uncertainty is able to move inside the bounds with an entropic index q of 2, the maximum

Sharpe ratio is 0.21, just shy of the empirical Sharpe ratio of 0.2261, see the lower half of table 1,

and more than twice the value obtained under both HS’s and EZ’s specifications. That agents over-

weight the probability of pernicious distributions including the worst case under the generalized model

uncertainty formulation drives up the returns on risky capital relative to the risk free bond.

Model σM σR
Λ σU

Λ σP
Λ ρ

(

M,ΛR
)

HS (q = 1) 0.101 0.006 0.096 0 0.983

EZ (θ = 0) 0.101 0.006 0.089 0.007 0.984

Gen. Unc. 0.213 0.006 0.104 0.104 0.969

See the main text.

Table 7: Pricing Kernel Decomposition for the Production Economy

The variances of the decomposition of the pricing kernel from section 3.4 for the three preferences

can be found in table 7. All three attribute a minimal amount of the kernels variation to the market

price of risk and instead find model uncertainty and pessimism to be the primary contributors. EZ

preferences do attribute the majority of the variance as stemming from uncertainty, but the role of

pessimism (its variance is roughly 1/4 of that of uncertainty) is far from negligible – that the sum

of the variances of the three components exceed the variance of the kernel itself is a result of the

34See the online appendix.
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negative correlation of the market price of risk with the remaining components. Under generalized

model uncertainty as in the endowment economy, the market prices of risk and uncertainty contribute

equally to the variance of the kernel and here even individually demonstrate a higher volatility than

the market price of model uncertainty in either the HS or EZ case.

As was the case in the endowment model, the proportion of the variance of the pricing kernel

under EZ preferences that is attributable to pessimism depends positively on q (and hence negatively

on risk aversion).35 Indeed for relative risk aversions less than two, the variance of the market price of

pessimism is the predominant contributor to the variance of the kernel and for plausible levels of risk

aversion in the range of, say, 2 to 5, the market price of pessimism remains a significant contributor to

the volatility of the kernel.

From an asset pricing perspective, the approach of generalized model uncertainty is of interest

beyond its ability to provide a model uncertainty foundation for the EZ specification with arbitrary

felicity functions. The combination of model uncertainty and pessimism in the formulation of ex-

pectations by overweighting the probability of events made more likely under pernicious distributions

brings the macroeconomic model’s predictions of the maximum Sharpe ratio in line with empirical

post war U.S. observations for reasonable DEPs.

5 Conclusion

I have derived a generalization of the model uncertainty framework of HS, using Tsallis’s (1988) gen-

eralized entropy. The resulting preferences recover HS’s original formulation with an exponential

certainty equivalent as one special case and recover the constant elasticity of substitution risk specifi-

cation of EZ with a power certainty equivalent as another. This latter result is particularly important,

as it provides a model uncertainty foundation for EZ preferences with arbitrary period utility functions

(allowing, e.g., arbitrary intertemporal elasticities of substitution). While my generalized model un-

certainty is able relax the special set of assumptions needed to link EZ and HS preferences, it comes

with its own set of special assumptions. Namely, the inclusion of an additional margin of model un-

certainty via the new parameter induced by Tsallis’s (1988) generalized entropy, the entropic index q,

that I deem a form of pessimism that induces agents to overweight events made more likely under the

pernicious distributions they fear when forming expectations. This might in and of itself be viewed

35See table 13 in the online appendix.
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as a negative result that demonstrates the difficulty in providing a clear link between EZ and HS in

general settings.

In applications to both a standard RBC production model and a standard long-run risk endowment

model, I find that both HS’s original formulation and the model uncertainty formulation for EZ provide

roughly the same predictions for the maximum Sharpe ratios for a given DEP. This supports the notion

that EZ and HS preferences are closely related, but this comes with a caveat, as the Sharpe ratios are

only equivalent when these probabilities are calculated for EZ using the approximating model without

acknowledging the additional margin of pessimism. Aside from these limiting cases, increasing the

entropic index (or increasing pessimism) leads to an increase in the maximum Sharpe ratio for a

given DEP under the two parameter generalized model uncertainty I introduce here. The bounds

of Hansen and Jagannathan (1997) can be entered with modest DEPs (25%) and an elevated entropic

index (q = 2). This opens a new question as to how this entropic index is to be disciplined and whether

uncertainty and pessimism can be separated empirically at all.
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A Appendix

A.1 Details of Equation (15)

The generalized risk-aggregator (14) can be rewritten as follows

R (V )(x) = min
g(x′,x)>0∫

g(x′,x)p(x′,x,a(x))dx′=1

∫
V (x′)g(x′,x)q−1 p̃(x′,x,a(x))dx′+θIq

(

p̃(x′,x,a(x)), p(x′,x,a(x))|x
)

= min
g(x′,x)>0∫

g(x′,x)p(x′,x,a(x))dx′=1

∫
V (x′)

g(x′,x)q−1 p̃(x′,x,a(x))∫
g(x′,x)q−1 p̃(x′,x,a(x))dx′

dx′

(A-1)

+

(

1−
1∫

g(x′,x)q−1 p̃(x′,x,a(x))dx′

)∫
V (x′)g(x′,x)q−1 p̃(x′,x,a(x))dx′

+θIq

(

p̃(x′,x,a(x)), p(x′,x,a(x))|x
)

= min
g(x′,x)>0∫

g(x′,x)p(x′,x,a(x))dx′=1

∫
V (x′)

g(x′,x)q−1 p̃(x′,x,a(x))∫
g(x′,x)q−1 p̃(x′,x,a(x))dx′

dx′

(A-2)

+

(∫
g(x′,x)q−1 p̃(x′,x,a(x))dx′−1

)∫
V (x′)

g(x′,x)q−1 p̃(x′,x,a(x))∫
g(x′,x)q−1 p̃(x′,x,a(x))dx′

dx′

+θIq

(

p̃(x′,x,a(x)), p(x′,x,a(x))|x
)

(A-3)

As the distorted density p̃(x′,x,a(x)) = g(x′,x)p(x′,x,a(x)) is restricted to indeed be a probability

density function
∫

p̃(x′,x,a(x))dx′ =
∫

g(x′,x)p(x′,x,a(x))dx′ = 1, the term∫
g(x′,x)q−1 p̃(x′,x,a(x))dx′−1 =

∫
g(x′,x)q−1 p̃(x′,x,a(x))dx′−

∫
p̃(x′,x,a(x))dx′(A-4)

=

∫
(

g(x′,x)q−1 −1
)

p̃(x′,x,a(x))dx′(A-5)

is proportional to q-relative entropy

Iq

(

p̃(x′,x,a(x)), p(x′,x,a(x))
) .
=

∫
p(x)

(

p̃(x′,x,a(x))

p(x′,x,a(x))

)q

lnq

(

p̃(x′,x,a(x))

p(x′,x,a(x))

)

dx′(A-6)

=
∫

p(x′,x,a(x))g(x′,x)q lnq

(

g(x′,x)
)

dx′(A-7)

=

∫
p(x′,x,a(x))g(x′,x)q g(x′,x)1−q −1

1−q
dx′(A-8)

=

∫
p(x′,x,a(x))

g(x′,x)−g(x′,x)q

1−q
dx′(A-9)

=

∫
1−g(x′,x)q−1

1−q
p̃(x′,x,a(x))dx′(A-10)
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Substituting into the risk aggregator above gives

R (V )(x) = min
g(x′,x)>0∫

g(x′,x)p(x′,x,a(x))dx′=1

∫
V (x′)

g(x′,x)q−1 p̃(x′,x,a(x))∫
g(x′,x)q−1 p̃(x′,x,a(x))dx′

dx′

+(q−1) Iq

(

p̃(x′,x,a(x)), p(x′,x,a(x))|x
)

∫
V (x′)

g(x′,x)q−1 p̃(x′,x,a(x))∫
g(x′,x)q−1 p̃(x′,x,a(x))dx′

dx′

+θIq

(

p̃(x′,x,a(x)), p(x′,x,a(x))|x
)

(A-11)

Collecting terms in Iq (p̃(x′,x,a(x)), p(x′,x,a(x))|x) delivers (15) in the main text.

A.2 Details of Proposition 3.1

Abusing notation to minimize clutter by suppressing the dependence on x, the current state, and recy-

cling notation by relabeling the future state, x′, with x, the aggregator of (14) can be rewritten as

Ṽ
.
= min

g(x)>0

∫
V (x)g(x)qp(x)dx+θ

∫
g(x)q lnq (g(x)) p(x)dx+λ

(∫
g(x)p(x)dx−1

)

(A-12)

The first order condition is

0 = qV (x)g(x)q−1p(x)+θ
1−qg(x)q−1

1−q
+λp(x)(A-13)

multiplying the foregoing with g(x)

0 = qV (x)g(x)qp(x)+θ
g(x)−qg(x)q

1−q
+λp(x)g(x)(A-14)

and rearranging yields

0 = q
[

V (x)g(x)qp(x)dx+θ(x)q lnq (g(x)) p(x)+λ(g(x)p(x)−1)
]

+θg(x)p(x)+(1−q)λp(x)g(x)+λq

(A-15)

Integrating over x yields

0 = qṼ +θ+λ(A-16)

Combining the foregoing, (A-16) with the first order condition, (A-13)

0 = q
[

V (x)−Ṽ +θ(x)g(x)q−1lnq (g(x))
]

p(x)(A-17)

noting that p(x) and q are assumed nonzero gives

0 =V (x)−Ṽ +θ(x)

(

1−g(x)q−1
)

1−q
(A-18)

which can be rearranged as

0 =V (x)−Ṽ +θ

(

1−g(x)q−1
)

(1−q)
−V (x)

(

1−g(x)q−1
)

(A-19)

and

0 = g(x)q−1V (x)−Ṽ +
θ

1−q

(

1−g(x)q−1
)

(A-20)
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multiplying the foregoing with36 1−q
θ g(x)1−q delivers

0 = (1−q)
1

θ
V (x)− (1−q)

1

θ
g(x)1−qṼ +g(x)1−q −1(A-21)

or

1− (1−q)
1

θ
V (x) = g(x)1−q

(

1− (1−q)
1

θ
Ṽ

)

(A-22)

from which the minimizing likelihood ratio, g(x), follows as

g(x) =

(

1− (1−q) 1
θV (x)

)
1

1−q

(

1− (1−q) 1
θṼ
)

1
1−q

=
expq

(

−1
θV (x)

)

expq

(

−1
θṼ
)(A-23)

and the minimizing, or worst-case, probability distribution is then

p̃(x) = p(x)
expq

(

−1
θV (x)

)

expq

(

−1
θṼ
)(A-24)

as was claimed in proposition 3.1.

Integrating both sides of the previous equation with respect to x gives

1 =
∫

p(x)
expq

(

−1
θV (x)

)

expq(−
1
θṼ )

dx(A-25)

which, as Ṽ is independent of x, can be written as

expq(−
1

θ
Ṽ ) =

∫
p(x)expq

(

−
1

θ
V (x)

)

dx(A-26)

yielding the risk aggregator or certainty equivalent

Ṽ =−θ lnq

[∫
expq

(

−
1

θ
V (x)

)

p(x)dx

]

(A-27)

as was claimed in proposition 3.1.

A.3 Sequential Formulation

To also examine sequential decision problems, it will be useful to consider sequential formulations of

g generalized entropy. I follow Hansen and Sargent (2005) closely and rederive their sequential en-

tropy formulations under q generalizations. Relabel the likelihood ratio or Radon-Nikodym derivative

gt+1
.
= g(x′,x)

.
= p̃(x′,x,a(x))

p(x′,x,a(x)) and distributions p̃t+1
.
= p̃(x′,x,a(x)) and pt+1

.
= p(x′,x,a(x)) from (13)

for notational ease and define the martingale

Gt = gtGt−1 = G0

t

∏
s=1

gs(A-28)

36Note that if θ = 0, the foregoing reduces to 0 = g(x)q−1V (x)− Ṽ , which can be solved for the minimizing likelihood

ratio g(x) as g(x) =
(

V (x)
Ṽ

) 1
1−q

, which is the same as (A-23) with θ set to zero.
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Following Hansen and Sargent (2005), I will decompose −E0

[

Sq(Gt)
]

= Et

[

G
q
t lnq Gt

]

, the q gener-

alized (negative) entropy of a time t distortion conditional on time 0 information as37

E0

[

G
q
t lnq Gt

]

−E0

[

G
q
0 lnq G0

]

= E0

[

t−1

∑
j=0

G
q
jE j

[

g
q
j+1 lnq g j+1

]

]

(A-29)

= E0

[

t−1

∑
j=0

G
q
j Iq

(

p̃ j+1, p j+1

)

]

(A-30)

or the relative entropies of the distortions to the approximating model. Likewise following Hansen

and Sargent (2005), it will be useful to have a q generalized discounted relative entropy, as this will be

used to construct an entropy penalty for sequential decision problems.

(1−ρ)
∞

∑
t=1

ρtE0

[

G
q
t lnq Gt

]

= ρ
∞

∑
t=1

ρtE0

[

G
q
t Et

[

g
q
t+1 lnq gt+1

]]

(A-31)

= ρ
∞

∑
t=1

ρtE0

[

G
q
t Iq

(

p̃ j+1, p j+1

)]

(A-32)

which follows from (A-29) and summation by parts.

Here I state and interpret a sequential decision problem that leads to the recursive formulations

above.38 Consider the following zero-sum two player game with a minimizer choosing a martingale

to distort the maximizer’s model

max
{at}

min
{gt+1}

E0

[

∞

∑
t=0

G
q
t βt
(

u(xt ,at)+θβ
[

g
q
t+1 lnq gt+1

])

]

(A-33)

where Gt is a martingale defined in (A-28) and xt is distributed as in (10). Under a Bellman-Isaacs

condition, I am free to exchange the minimization and maximizations. Doing so and considering a

given sequence of controls, {at ∈ At}, defining W0
.
= E0

[

∑∞
t=0 G

q
t βtu(xt ,at)

]

, the minimizer solves the

following value equation

V0 = min
{gt+1}

W0 +θβE0

[

∞

∑
t=0

G
q
t βtg

q
t+1 lnq gt+1

]

(A-34)

using the law of iterated expectations, the second term in the foregoing is (A-31), the q generalized

discounted relative entropy with β as the discount factor. The value function solves the following

Bellman equation

G
q
t Vt = min

gt+1

G
q
t u(xt ,at)+βθG

q
t Et

[

g
q
t+1 lnq gt+1

]

+βEt

[

G
q
t+1Ṽt+1

]

(A-35)

where Ṽt+1 is next period’s value function at the optimum. Dividing through by G
q
t gives

Vt = min
gt+1

(

u(xt ,at)+βθEt

[

g
q
t+1 lnq gt+1

]

+βEt

[

G
q
t+1

G
q
t

Ṽt+1

])

(A-36)

37See the online appendix.
38See especially Hansen and Sargent (2007) and Hansen and Sargent (2005), whom I follow closely here.
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= u(xt ,at)+β min
gt+1

(

Et

[

g
q
t+1Ṽt+1

]

+θIq

(

p̃ j+1, p j+1

))

(A-37)

Inspection shows that the minimization problem is identical to (14). Using the solution to the mini-

mizer’s problem from proposition (3.1) delivers

Ṽt = u(xt ,at)−βθ lnq

(

Et

[

expq

(

−
1

θ
Ṽt+1

)])

(A-38)

a recursive representation of the objective function of the maximizer, who then chooses the sequence

{at} accordingly.
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B Online Appendix [Not for Publication]

B.1 Assumptions for Equivalence between HS and EZ

The recursive preferences of EZ lead to a power certainty equivalent, see section 3.2, whereas those

of HS lead to an exponential certainty equivalent, see section 3.1. As has been demonstrated by, e.g.,

Tallarini (2000), Hansen, Heaton, Lee, and Roussanov (2007), Barillas, Hansen, and Sargent (2009),

and Ju and Miao (2012), the two are closely related under special restrictions on the parameters and

the period utility function. I review this in the following proposition.

Proposition B.1. Logarithmic Equivalence of Risk Sensitive and Model Uncertainty Preferences

If the elasticity of intertemporal substitution in (26) is one, the period utilities are related through a

logarithmic transformation

−θ =
1

(1−β)(1− γ)
and uHS(x,a(x)) = ln

(

uEZ(x,a(x))
)

(B-39)

then

V HS(x) =
1

1−β
ln
(

V EZ(x)
)

(B-40)

Proof. Setting the intertemporal elasticity of substitution in (26) to one (ρ = 1) and taking logs yields

ln((V EZ(x)) = (1−β) ln(uEZ(x,a(x)))+
β

1− γ
ln

(∫
V EZ(x′)

1−γ
p(x′,x,a(x))dx′

)

Defining Ṽ EZ(x) =
ln((V EZ(x))

1−β
and dividing the foregoing by (1−β) gives

Ṽ EZ(x) = ln(uEZ(x,a(x)))+
β

(1−β)(1− γ)
ln

(∫
expṼ EZ(x)(1−β)(1− γ)p(x′,x,a(x))dx′

)

comparison with the recursive formulation under HS

V HS(x) = uHS(x,a(x))−θβ ln

∫
exp

[

−
1

θ
V HS(x′)p(x′,x,a(x))

]

dx′(B-41)

completes the proof.

Risk sensitive and uncertainty averse preferences coincide but only in the special case of an in-

tertemporal elasticity of substitution of one and a logarithmic relationship between the period utility

functions – Hansen, Heaton, Lee, and Roussanov’s (2007, p. 3975) “special set of assumptions.”

B.2 Generalized Relative Entropy: Two State Examples

Figure 3a plots (8) for a two state random variable over possible values of p̃ for differing values of

the entropic index with the baseline distribution given by the equiprobable case. When the two distri-

butions match (p̃ = p = 0.5), relative entropy is zero. Elsewhere, entropy is positive and increasing

in the entropic index. For q > 1 (q < 1), relative entropy is greater (less) than the Kullback-Leibler
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Figure 3: q-Relative Entropy or Generalized Kullback-Leibler Divergence

magenta—q = 0.1, red—q = 0.5, black—q = 1, blue—q = 2, green—q = 10

p(x) = 0.5—Two State Equiprobable

divergence. Figure 3b plots the derivative with respect to p̃, which also varies with q. Note that for the

case q = 2, the derivative is linear in p̃ given by − 2
1−p

+ 2
p(1−p) p̃. Thus, the entropic index does more

than just scale standard relative entropy, but also changes the margin.

Figure 4 provides the same picture as figure 3, but now p = 0.75, as can be deduced by the point

of zero relative entropy. This change not only shifts the picture from before to the right, but also tilts

the measures to the right, as can be confirmed using the linear relationship for the q = 2 case above.

B.3 Conditional Entropy

E0

[

G
q
t lnq Gt

]

−E0

[

G
q
0 lnq G0

]

(B-42)

can be written as

E0

[

G
q
t lnq Gt

]

−E0

[

G
q
0 lnq G0

]

=
1

1−q
E0

[

G
q
t

(

G
1−q
t −1

)]

−
1

1−q
E0

[

G
q
0

(

G
1−q
0 −1

)]

(B-43)

=
1

1−q
E0

[

G
q
t

(

G
1−q
t −1

)]

+
1

1−q
E0

[

G
q
0

(

1−GtG
−q
0

)]

(B-44)

=
1

1−q
E0

[

G
q
t

(

G
1−q
t −1

)]

+
1

1−q
E0

[(

G
q
0 −Gt

)]

(B-45)

=
1

1−q
E0

[

G
q
t

(

G
q
0G

−q
t −1

)]

(B-46)
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Figure 4: q-Relative Entropy or Generalized Kullback-Leibler Divergence

magenta—q = 0.1, red—q = 0.5, black—q = 1, blue—q = 2, green—q = 10

p(x) = 0.75—Two State Nonequiprobable

where the second equality follows as E0 [Gt ] = G0. Define the following q martingale

G̃t
.
= G

q
t = g

q
t G̃t−1 = G0

t

∏
s=1

gq
s(B-47)

which is a sub-/super-martingale as q is greater/less than zero. Equation (B-60) can be written as

E0

[

G
q
t lnq Gt

]

−E0

[

G
q
0 lnq G0

]

=
1

1−q
E0

[

G̃t

(

G̃0G̃−1
t −1

)]

(B-48)

=
1

1−q
E0

[

G̃0 − G̃t

]

(B-49)

=
1

1−q
E0

[

G̃0 +
t−1

∑
j=0

(

G̃ j+1 −E j

[

G̃ j+1

])

−Et−1

[

G̃t

]

]

(B-50)

=
1

1−q
E0

[

t−1

∑
j=0

E j

[

G̃ jg j+1 − G̃ j+1

]

]

(B-51)

= E0







t−1

∑
j=0

G̃ jE j







g j+1 −
G̃ j+1

G̃ j

1−q












(B-52)
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or, using the definition of q relative entropy in (8),
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B.4 Discounted Conditional Entropy
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can be written as
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where the second equality follows as E0 [Gt ] = G0. Define the following q martingale
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which is a sub-/super-martingale as q is greater/less than zero. Equation (B-60) can be written as
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or, using the definition of q relative entropy in (8),
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B.5 Discounted Entropy and Detrended Certainty Equivalents

Consider the sequential formulation of section A.3 where the period utility grows with the factor Wt and

relative entropy is discounted with the same factor following Cagetti, Hansen, Sargent, and Williams

(2002).

The necessity of discounting the entropy penalty with the growth factor of period utility follows

the same logic that discounts entropy in the absence of growth with the idiosyncratic discount factor.

As Hansen and Sargent (2005) point out, a failure to discount the entropy penalty in the presence of

utility discounting will cause concerns for robustness to wear off over time, causing agents to front

load their the probability distortions associated with these concerns.39 Consider now a situation with

constant growth of period utility. From Kocherlakota (1990), we know that the effective discount

factor is now the product of the idiosyncratic discount factor the growth factor of the period utility

function. Hence, not discounting with the growth factor causes agents to grow out of their concerns

for robustness, analogously to Hansen and Sargent (2005). In the presence of stochastic growth, if

the entropy penalty is not discounted with the product of the now stochastic growth and idiosyncratic

discount factor, a positive shock to growth will lead to the same, albeit now conditionally, wearing off

of robustness concerns and front loading of probability distortions.

The zero-sum two player game with a minimizer choosing a martingale to distort the maximizer’s

model is now
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39Hansen and Sargent (2009) show that failing to discount entropy leads to an indifference towards the timing of the

resolution of uncertainty in the two-state dynamic example of Kreps and Porteus (1978) and towards persistence in the

example of Duffie and Epstein (1992).
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Inspection shows that the minimization problem is identical to (14) but with a time varying multiplier

on the entropy constraint θ̃t
.
= θWt

β
. Using the solution to the minimizer’s problem from proposition

(3.1) delivers

Vt = u(xt ,at)−βθ̃t lnq

(

Et
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)])
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Let ũ(xt ,at)
.
= u(xt ,at)/Ft be stationarized or detrended period utility. Dividing the foregoing through

by Ft yields
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where Ṽt
.
= u(xt ,at)/Ft is the stationarized or detrended value function. Using the definition of θ̃t

above and requiring Wt be equal to βFt following Cagetti, Hansen, Sargent, and Williams (2002) gives
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That is, discounting entropy following Cagetti, Hansen, Sargent, and Williams (2002) with the stochas-

tic factor compatible with time preference and stochastic growth is equivalent to first stationarizing the

approximating model and then applying the concern for robustness.

B.6 Risk Aversion
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B.7 Risk Aversion following Swanson (2018)

In many macroeconomic models, agents possess a flexible labor margin that can be adjusted to attenu-

ate the consequences of risk on their utility. Swanson (2018) incorporates these flexible labor margins

into measures of risk aversion defined over wealth gambles, which lead to different attitudes towards

risk by agents. I extend his measure to the generalized uncertainty preferences presented above.

Swanson (2018) calculates the risk aversion with a Taylor expansion of an agent’s value function

with respect to a risky wealth gamble with period utility potentially a function of both consumption

and labor. Accordingly, let the agents value function be given by

V (a,x) = u(c, l)−βθ lnq

(∫
expq

(

−
1

θ
V (a′,x′)

)

p(x)dx

)

(B-86)

where the agents assets next period, a′, are given by

a′ = (1+ r)a+wl+d − c+σε′(B-87)

with r the return, w the wage, l the agent’s labor supply, d net transfers, c her consumption, and σε′

a one-shot risky gamble. The state vector x is exogenous to the household and governs the wage,

returns, and transfers. Swanson (2018) determines the one-time fee µ the agent would be willing to

pay to avoid the risky gamble

a′ = (1+ r)a+wl+d − c−µ(B-88)

The agent’s coefficient of absolute wealth-gamble risk aversion Ra(a,x) = limσ→0 µ(a,x,σ)/(σ2/2),

where µ(a,x,σ) is the fee the agent would be willing to pay to avoid the gamble σ in state x with wealth

a. Given the assumptions 1 and 3-8 of Swanson (2018), this measure of risk aversion is given in the
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nonstochastic steady state by
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where λ = (ucucl −ulucc

/

(ucull −ulucl).

The agent’s consumption-wealth and consumption-and-leisure-wealth coefficients of relative wealth-

gamble risk aversion are given through the following transformations that incorporate the agent’s hu-

man wealth into the total wealth consideration

Rc(a,x) =
c

r
Ra(a,x)(B-92)

Rcl(a,x) =
c+w

(

l̄ − l
)

r
Ra(a,x)(B-93)

where l̄ is the agent’s time endowment.

Simple inspection of (B-89) for the cases θ = 0 and q = 1 confirm that these are identical to the

measures provided in Swanson (2018).40

B.8 Data

All business cycle data was retrieved from the Federal Reserve Economic Data (FRED) database of

the Federal Reserve Bank of St. Louis.

R is the return on the NYSE value weighted portfolio from the CRSP dataset and R f is the sec-

ondary market rate on the three month Treasury bill. Both returns have been deflated by the implicit

deflator of the PCE Nondurables and Services series.

B.9 Calibration of the Endowment Economy

The endowment economy is paramterized for the EZ case as in table 8, where θ necessarily equals

zero.41 The values of θ and q for the HS and generalized uncertainty preferences are discussed in the

main text.

40The one caveat being r
1+r

in the last term on the last line of (B-89). As discussed by Swanson (2018), however, this

term, which is equal to 1−β, ought to be present when the agent’s period utility function is not scaled by 1−β.
41See section 3.2.
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Parameter β q ρ φ ρx ρσ ρdc σx σd σc σσ µc µd

Value 0.997 1.119 0.438 3.209 0.991 0.995 0.057 0.081 5.39 0.005 1.3e-6 0.005 0.002

See the main text.

Table 8: Parameter Values

B.10 Detailed Derivation of the Pricing Kernel for the Endowment Economy

The stochastic discount factor of the household or pricing kernel (see section 3.4), Mt+1, is given by

Mt+1
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combining and deflating with consumption (Wt =Ct) yields the final form of the pricing kernel in the

main text.

B.11 Worst Case Moments under q Measure for the Endowment Economy

EZ Preferences Generalized Uncertainty

θ = 0, q = 1.119→DEP=4.25% q = 2, θ =−6.29→DEP=25%

Variable Mean % Std. Dev. % Autocorr. Corr. w/ xt Mean % Std. Dev. % Autocorr. Corr. w/ xt

∆ lnct 0.127 0.541 0.182 0.425 0.206 0.563 0.231 0.479

xt -0.367 0.234 0.986 1 -0.290 0.274 0.989 1

∆ lndt -0.982 2.673 0.078 0.279 -0.731 2.732 0.103 0.320

σt 2.382E-03 1.233E-03 0.994 -0.270 2.427E-03 1.235E-03 0.994 -0.203

Worst case moments calculated under the gq measure

Table 9: Worst Case Moments
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B.12 The Hansen and Jagannathan (1997) Bounds for the Endowment Econ-

omy

Figure 5 depict the Hansen and Jagannathan (1997) bounds from the data and the maximum Sharpe

ratios from the different specifications here. The case of expected utility clearly replicates Weil’s

(1989) risk-free rate puzzle, with the increase in the volatility of the pricing kernel associated with a

decrease in its mean. Separating risk aversion and intertemporal substitution with the preferences of

EZ or HS breaks this puzzle and moves vertically towards the bounds, here depicted with DEPs of 5 to

40%. The generalized model uncertainty is depicted in green circles with the DEPs fixed at 25% and

approaches the bounds with q’s above 2.
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Figure 5: The Hansen-Jagannathan Bounds for the Endowment Economy

×: Expected Utility; +: HS and EZ;

©: Generalized Entropy, DEP= 25% and q = 1,1.1,1.2,1.3,1.4,1.5,1.75,2,2.25,2.5

B.13 Details of the Production Economy

The household’s maximization is subject to

Ct +Kt =WtNt +RRK
t Kt−1 +(1−δ)Kt−1(B-97)

where Kt is capital stock accumulated today for productive purpose tomorrow, Wt real wage, RRK
t the

capital rental rate and δ ∈ [0,1] the depreciation rate. Investment is the difference between the current

capital stock and the capital stock in the previous period after depreciation

It = Kt − (1−δ)Kt−1(B-98)

48



The stationarized resource constraint is

ct + kt = yt +(1−δ)exp(−at)kt−1(B-99)

where yt = e−αat kα
t−1N1−α

t follows from profit maximization, with the stationarized wage wt =(1−α)e−αat

kα
t−1N−α

t and rental rate RRt = αe−(1−α)at kα−1
t−1 N1−α

t and the household’s budget constraint

ct + kt = wtNt +
(

1−δ+RRK
t

)

exp(−at)kt−1(B-100)

closing the model.

The calibration of the model follows Tallarini (2000) to maintain comparability (see the discussion

there and the online appendix for the calibration common to all models here). The standard deviation

of productivity growth σa is set to match the post-war U.S. consumption growth volatility in table 1

and the preference parameters, θ and q, are set using DEPs; see the discussion in section 4.1.

Parameter β ψ α δ a σa

Value 0.9926 N̄ = 0.2305 0.339 0.021 0.004 Std. Dev. ∆ lnct = 0.566%

See Tallarini (2000) and the main text.

Table 10: Parameter Values

Table 10 contains the calibration of the model common to all specifications that follows Tallarini

(2000).

B.14 Detailed Derivation of the Pricing Kernel for the Production Economy
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(B-103)

combining yields the final form of the pricing kernel in the main text.
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EZ Preferences

θ = 0, DEP=25%→ q = 1.082

Approximating Model Worst-Case Model q

Variable Mean % Std. Dev. % Autocorr. Mean % Std. Dev. % Autocorr.

∆ lnYt 0.400 1.023 0.009 0.291 1.023 0.012

∆ lnCt 0.400 0.566 0.084 0.291 0.562 0.082

at 0.000 1.189 0.000 -0.109 1.187 0.004

Generalized Uncertainty

q = 2, DEP=25%→ θ = 132.15

Approximating Model Worst-Case Model

Variable Mean % Std. Dev. % Autocorr. Mean % Std. Dev. % Autocorr.

∆ lnYt 0.400 1.233 0.008 0.146 1.237 0.005

∆ lnCt 0.400 0.566 0.101 0.146 0.562 0.119

at 0.000 1.347 0.000 -0.254 1.344 0.001

For all three specifications, σz is adjusted to match the empirical volatility of ∆ lnCt in

the approximating model and the free parameter in the preference specification to yield a

detection error probability of 25%.

Table 11: Business Cycle Moments using the q measure

B.15 Worst Case Moments under q Measure for the Production Economy

B.16 Details of the Asset Pricing Implications of the Production Economy

Under the calibration in the previous section (specifically for DEPs of 25%), both HS’s and EZ’s spec-

ifications yield maximum Sharpe ratios of 0.1. This relation holds more generally, as can be seen in

figure 6, which plots the maximum Sharpe ratios of the approximating models against the DEPs for

the HS and EZ specifications. For a DEP of 0.25, both specifications yield roughly the same maximum

Sharpe ratio of around 0.1. For very low DEPs the specification of EZ and for very high DEPs the

specification of HS produces higher maximum Sharpe ratios. That these two different specifications

yield very similar results when controlling for the DEPs confirms the close relation between these two

different preference specifications carries over from the endowment economy studied above. Likewise

confirmed from the endowment economy is that the combined distortion g
q
t+1 for EZ preferences gen-

erates a much lower maximum Sharpe ratio for a given DEP than under the HS case, underlining the

caveat that this close relation hinges on using only the change of measure gt+1 associated with EZ

preferences.

Holding the DEP constant at 25%, the generalized model uncertainty present in this paper moves

directly towards the bounds and enters them with a q = 2.25, as can be seen in table 12. For the q = 2

specification, the maximum Sharpe ratio is 0.21, just shy of the empirical Sharpe ratio of 0.2261, see
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Figure 6: Maximum Sharpe Ratio and DEPs

Red: HS (g); Blue: EZ (g); Green: EZ (gq)

q = 1 1.1 1.2 1.3 1.4 1.5 1.75 2 2.25 2.5

MSR 0.10 0.11 0.12 0.13 0.14 0.15 0.19 0.21 0.24 0.27

θ is adjusted to keep the DEP at 0.25.

Table 12: Entropic Index and the Maximum Sharpe Ratio

the lower half of table 1, and more than twice the value obtained under both HS’s and EZ’s specifi-

cations. That agents overweight the probability of pernicious distributions including the worst case

under the generalized model uncertainty formulation drives up the returns on risky capital relative to

the risk free bond.

Figure 7 contains the Hansen and Jagannathan (1997) bound for the assets in table 1 and both

expected utility (θ = ∞ and q = 1) and for recursive utility using the exponential certainty equivalent

(q = 1 and varying θ). For the expected utility case, the risk-free rate puzzle can be seen through the

decrease in E [mt+1] with risk aversion is increased from 5, 10, 20, 30, 40, 50, and finally to 100. By

holding the elasticity of intertemporal substitution constant at one, Tallarini (2000) is able to march

up to the bounds, but only for a degree of risk aversion equal to 100. Under the Hansen and Sargent

(2005) interpretation of calibrating using model uncertainty, this degree of risk aversion is associated

with a DEP of less than 5% for both HS and EZ, arguably past the limit of credulity. My generalized

model uncertainty is again able to approach and then enter the bounds with q’s above 2 for the DEPs

fixed at 25%.
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Figure 7: The Hansen-Jagannathan Bounds

×: Expected Utility; +: HS and EZ;

©: Generalized Entropy, DEP= 25% and q = 1,1.1,1.2,1.3,1.4,1.5,1.75,2,2.25,2.5

q q/(q− 1) σM 100
σR

Λ
σM

100
σU

Λ
σM

100
σP

Λ
σM

1.1 11 0.085 6.612 85.842 8.567

1.25 5 0.041 13.752 69.890 17.464

1.5 3 0.026 21.139 53.329 26.661

2 2 0.019 28.778 36.171 36.171

Table 13: Production: Risk and Pessimism under EZ
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