	Outline
Macroeconomic Model Comparison and Policy Robustness: New Tools & Applications Macro Financial Modeling Summer Session Wequassett Resort, Cape Cod, June 17-21, 2018 Volker Wieland IMFS, Goethe University Frankfurt	 New tools and initiatives model data base, comparison software, website, recent publications, initiative, network, conferences Examples using MMB 2.3 A peek at recent research applications Real equilibrium interest rates Robustness of macroprudential policy rules A proposal for a competition
MFM, June 20, 2018 1	MFM, June 20, 2018 2
	www.macromodelbase.com Home About Download Contribute Forum
1. New tools and initiatives	Macroeconomic Model Data Base (MMB) is an archive of macroeconomic models based on a common computational platform for systematic model comparison. The platform features more than 100 structural macroeconomic models establishing comparability between them across several dimensions. The user-friendly interface makes the various comparison exercises easily accessible. For each model in the database, replication packages are available that contain codes as well as comments on the replication of the seperitive models.
MFM, June 20, 2018	MMB 2.3 release from June, 21 new models, total 114

Recent related publications and new work

New Methods for Macro-Financial Model Comparison and Policy Analysis

 Chapter 15, Handbook of Macroeconomics (Vol 2), 2016, editors John B. Taylor and Harald Uhlig.

Model Uncertainty in Macroeconomics: On the Implications of Financial Frictions

- Chapter forthcoming in, Oxford Handbook of Central Banking.

Recent work on equilibrium real rates, fiscal stimulus and financial frictions, macroprudential & monetary policy rules, US tax reform.

MMCI: Make it easier to evaluate policy across models

Long tradition in monetary policy: Bryant, Hooper & Mann (Brookings 1993), Taylor (NBER 1999), Levin, Wieland & Williams (AER 2003).

Recently: Effects of Fiscal Stimulus in Structural Models

17 authors: Coenen, Erceg, Freedman, Furceri, Kumhof, Lalonde, Laxton, Lindé, Mourougane, Muir, Mursula, Resende, Roberts, Roeger, Snudden, Trabandt, in't Veld, AEJ-Macro. 2012.

One policy rule, many models

US FR803

US_FRBOB

US_FR808m

US_FV10

US FV15

US IACOS

US_N10

US_R11

US R15

US JPT11

US_LWY13

US_MR07

US_0W98

US ORDA

US PM08

US_PMOBI

US RA07

US_RE09

US RS99

US SW07

US_VMDno

US_VMDop

New model

Load previous choice

9 models: IMF, OECD, ECB, FRB (2), BoC, EU Commission, 2 academic.

Estimated US models

US_ACELm

US_ACELI

US AJ16

US_ACELswm

US_ACELswt

US_CCTW10

US_CD08

US_CFOP14

US_CFP17endo

US CFP17exp

US CMR10

US_CMR10fa

US_CMR14

US_CPS10

US_DG08

US_DNGS15

US_FGK15

US_FM95

US FMS134

Models with Adaptive Learning

US_DNGS15SW

US DNGS155Wb

US DNGS15SWSP

US CMR14noFA

All models

OPT1MENU

Models

Calibrated models

NK AFL15

NK_BGG99

NK_BGEU10

NK_BGUS10

NK_CFP10

NK_CGG99

NK_CGG02

NK_CK08

NK_CKL09

NK CW09

NK_ET14

NK_GK11

NK_GK098n

NK_GK13

NK_GM05

New model

EA_CKL09

EA_CW05ta

EA_CW05fm

EA DKR11

EA GE10

EA GNSS10

Estimated/Calibrated multi- and other-country models

All models

Estimated euro area mode

NK_GLSV07

NK GM07

NK IR04

NK_KRS12

NK_KW16

NK_LWW03

NK_MCN99ci

NK_MM10

NK_MPT10

NK NS14

NK PP17

NK PSV16

NK_RA16

NK_RW06

NK_RW97

NK_ST13

RBC_OTT11

EA_PV15

EA_OR14

EA_SW03

EA_SR07

New model

EA_QUEST3

All models

Monetary Policy Rules

O User-specified rule

O Coenen et al. (2012)

Choose your options

20 periods

Choose your shocks

Monetary Policy Shock

Fiscal Policy Shock

Name Output File

<< Baci

Save results

Continue >:

Monetary policy rules descriptions (pdf)

O Gerdesmeier and Roffia (2003)

O Levin, Wieland, Williams (2003)

Smets and Wouters US (2007)

O Orphanides and Wieland (2008)

O Orphanides and Wieland (2013)

O Christiano, Motto, Rostagno (2014)

Show Unconditional Variances

Plot Autocorrelation Functions

Plot Impulse Response Function

O Christiano, Eichenbaum, Evans (2005)

O Taylor (1993)

- 6

Next steps

- Full open source version of MMB (end of 2018)
 - Browser-based GUI, MMB using Dynare for Octave
- Online comparison database (end of 2018)
 - Browser-based GUI, drawing on simulation archive, possibility to include modeling approaches outside of Dynare
- More than 140 models end of 2019

2. Examples using MMB 2.3

MFM, June 20, 2018

σ

Volker Wieland

OPT1MENU

Models				
Calibrated models		Estimated US models		
□ At models □ KK_ARLIS □ N □ KK_BOGUIO □ N □ KK_BOGUIO □ N □ KK_BOGUIO □ N □ KK_GOGUIO □ N □ KK_GOGUIO □ N □ KK_CFPIO □ N □ KK_CC009 □ N □ KK_CC005 □ R □ Atmosts □ E □ E A_OV055a □ E □ E A_OV055a □ E □ E A_OV057a □ E □ E A_OK0510 □ E □ E A_OK0510 □ N □ E A_OK0510 □ N	K_GM07 K_R04 K_KR512 K_KVV16 K_LVVV03 K_LM10 K_M110 K_M110 K_M110 K_M110 K_M110 K_K1514 K_R010 K_K1514 K_R010 K_K1514 K_R010 K_K151 K_K151 K_R010 K_K151 K_R010 K_K151 K_R010 K_K151 K_K	At models US_ACELN US_ACELN US_ACELNT US_ACELNT US_ACELNT US_ACELNT US_ACENT US_CONTO U	US_FR803 US_FR806 US_FR806 US_FV10 US_FV10 US_FV15 US_R11 US_R11 US_R15 US_R11 US_R15 US_R17 US_V13 US_V0713 US_V0713 US_V071 US_F08 US_F08 US_F08 US_F08 US_F08 US_F09 US_F09 US_F09 US_SV07 US_SV07 US_SV07 US_SV07 US_SV07	

Monetary Policy Rules	
O User-specified rule	
O Taylor (1993)	
O Gerdesmeier and Roffia (2003)
O Levin, Wieland, Williams (2	2003)
O Christiano, Eichenbaum, E	vans (2005)
Smets and Wouters US (2	:007)
O Orphanides and Wieland	(2008)
Coenen et al. (2012)	
O Orphanides and Wieland	(2013)
Christiano, Motto, Rostagr	10 (2014)
Choose your options	
Show Unconditional Var	riances
Plot Autocorrelation Fun	ctions
Plot Impulse Response P	unctions
20 periods	
Choose your shocks	
Monetary Policy Shock	
Fiscal Policy Shock	
Other	
Name Output File:	Save results
	n (pdf)
Models descriptio	
Models descriptio	ules descriptions (pdf)

Monetary policy shock with SW rule

MFM, June 20, 2018

20

Government purchases shock with SW rule

File : s description (pdf tary policy rules descriptions (pdf)

Save results

Continue >

5

R ^ A III 1928

Autocorrelation functions: All shocks with SW Rule

18

MFM, June 20, 2018

Volker Wieland

OPT2MENU

MFM, June 20, 2018

O EA_GE10	O New model	O 05_FMS134	O New model	Name Output File : Save n
C) EA_CW05fm	C EA_SW03	US_FM95	O US_VMDop	Other
O EA_CW05ta	O EA_QUEST3	O US_FOK15	O US_VMDno	C LINE PROVIDENCE
O EA_CKL09	O EA_QR14	O US_DNGS15SWSP	O US_SW07	Model Specific Shocks
O EA_AWM05	O EA_PV15	O US_DNGS15SWpl	O US_R599	O Monetary Policy Shork
Estimated euro area models		O US_DNGS15SW	O US_RE09	Choose your shocks
O New model		O US_DNGS15	O US_RA07	20 periods
O NK GM05	O RBC_DTT11	O US_DG08	O US PMOBE	Plot Impulse Response Functions
O NK GLSV07	O NK_ST13	O US CPS10	O US PM08	Plot Autocorrelation Functions
O NK GK13	O NK RW97	O US CMR14npFA	O US 0803	Show Unconditional Variances
O NK GK19in	O NK RW06	O US CMR101a	O US_0W98	Choose your options
O NK_E114	O NK PATE	O US CHRID	O US_LWY13	
Omeenda	Owner	O US_CEPPIZES	Out upout	All available rules
O NK_CKL09	O NK_NS14	O US_CFP17endo	O US_IR15	Li Christiano, Motto, Rostagno (2014
O NK_CKUS	O NK_MPT10	O US_CF0P14	OUS_RIT	Coenen et al. (2012)
O NK_CGG02	O NK_MM10	O US_CD08	O US_N10	Companies and Weland (2013)
O NK_CGG99	O NK_MCN99cr	O US_CCTW10	O US_IACOS	Orphanides and Wieland (2008)
O NK_CFP10	O NK_LWW03	O US_AJ16	O US_FV15	Smets and Wouters US (2007)
O NK_BGUS10	O NK_KW16	O US_ACELawt	O US_FV10	Christiano, Eichenbaum, Evans (2
O NK_BGEU10	O NK_KRS12	O US_ACELswm	O US_FRB08mx	Levin, Wieland, Williams (2003)
O NK_BGG99	O NK_R04	O US_ACELt	O US_FRB08	Gerdesmeier and Roffia (2003)
O NK_AFL15	O NK_GM07	O US_ACELm	O US_FRB03	Taylor (1993)
Calibrated models		Estimated US models		User-specified rule

None Image: Section in the section index ind	HOUR	N 077		aron units			11 T	10		Court De pue		-	0	
<pre>shinite</pre>	HOME	PLOTS APPS Image: Find Files Inse Image: Compare Commer Image: Print Inder Image: Print Inder	eD Intfx Intfx EDIT EDIT EDIT	MOR VEW	Breakpoints BREAKPOINTE gui-mlab-2.3 + M jects/MODELBASE	MME_OPTIONS • MME/Inmite gai malab 2.3/MODELS/NK_GK11/NK_GK11		gure 1: MODE		Search Docur	mentation		-	
Worksprect 0 90 sigma_Ne = 0.01; twealth shock Name ^ Value Min 91 sigma_1 = 0.01; tweanth shock Name ^ Value Min 91 sigma_1 = 0.01; tweanth shock Al_Info I/ 92 shock pail 0.66; typersistence of the CP shock Al_Models 11/33 doubit -0.072; twinzersistence of the CP shock common, Window -0.072; twinzersistence 0.010 pail series data Sed doubit Name to MaTLAB? Watch this Video, see Examples, or read Getting Started. Only non zers Total commuting time; 0.00000 s	Alwrite OPTIMENU_MI OPTIMENU_MI OPTIMENU_MI OPTIMENU_MI OPTIMENU_AL OPTIMENU_AL OPTIMENU_AL OPTIMENU_AL OPTIMENU_AL OPTIMENU_AL OPTIMENU_AL OPTIMENU_AL OPTIMENU_MI OPTIMENU OPTIMEN	ULTLASV Dok JUTLINDOK JUTLING JUTLING	*	76 Fmf=log((epsilon-1)) 77 8 Wonetary Policy par 79 tho_i = 0: 40.8 80 kappa_pt=1.5; 81 kappa_y = -0.5/4; 82 84 sigma_ksi = 0.01 85 tho_ksi = 0.64 86 sigma_a = 0.05 87 tho_a = 0.95 88 sigma_g = 0.05 88 sigma_g = 0.05 88 sigma_g = 0.05 88 sigma_g		PR_ONIDMON + 76 Pmf=log((epsilon-1)/epsilon 77 Romestary Policy parameters 78 Monetary Policy parameters 79 rho_i 0; %0.8 80 kappa_pi= 1.5; 81 kappa_y = -0.5/4; 22 83 %Shocks 0.65; 84 sigma_ksi = 0.05; 85 rho_ksi = 0.66; 86 sigma_a = 0.01; 87 rho_a = 0.95; 88 sigma_g = 0.01; 89 rho_a = 0.95;		-1)/epsilon); parameters 0.8 Vinterest rate smoothing param Vinflation coefficient /4: Vourput gap coefficient 0.05; Vaire of the capital quality shoo 0.66; Vapersistence of the trp shock 0.05; Vaire of the TFP shock 0.01; Vaire of the government expenditu		File Edit View Insert Tools Desktop Window		Window	Help	
All Info All In	orkspace	Value	()	91 sigma_i	= 0.01;	Amonetary policy shock		Al shoe	ska 🗌	Combined resp	ponses of s	elect		
I ER (24) Models [M2 43 94 45 96 70] 42 ER (24) Models [M2 400 ble 34 v] Total computing time : 0h00m00s	AL_Info AL_Models common_rule currentpath data	II IstT double 6 Ibi33 double 7 C:\vw\vwprojects\M_ Swl double 1	59 -0.972	92 rho_shock_p 93 sigma_psi < Command Window () New to MATLA8? W.	a1= 0.66; = 0.072; atch this <u>Video</u> , see	Spersistence of the CP shock Size of the CP shock		Variables to Selected Only nor All mode	be plotted I variables (Output I zero IRFs, decimi I variables	: Gap, Inflation, al for precision	inter t 5	Contr	iue	
c > A >>	Est_Cal_Models Est_EA_Models	[42 43 44 45 46 47 61 4 1x12 double 3	42 34 v	Total computir A >>	ng time : Oh00	0m00#								

ø × _

NK-GK11: Gertler-Karadi (2011), Capital quality shock,

3. Research applications: Equilib

3. Research applications: Equilibrium real interest rates, macro-prudential policy rules.

Volker Wieland

Recursive real-time estimation of long-run equilibrium rate

Real-time estimation and forecasting

- See also Wolters and Wieland (2013), Forecasting and policy making, in Elliott, Granger and Timmermann, Handbook of economic forecasting, vol 2.
- Recent application: Wieland and Wolters, Little decline in modelbased estimates of the long-run equilibrium interest rate.

23

MFM, June 20, 2018

with Smets-Wouters model

SW 2007 r* estimate

Average real rate for 20year windows

R* for rolling 20-year window's

95% confidence intervals

24

Contributions to the difference between average real interest rate and long-term r^{*} for the United States⁴

Total difference: -1.75 % = 0.45 % - 2.2 %

	Shock	Contribution to difference
	Technology	-0.09 %
	Risk premiums	-0,48 %
	Government expenditure	-0,04 %
	Investment-specific	-0,24 %
	Monetary policy	-0,83 %
	Price markup	0,15 %
8	Wage markup	-0,01 %

Macro-prudential policy rules

Binder, Lieberknecht, Quintana and Wieland (2017), Robust macroprudential policy rules under model uncertainty, working paper.

Three models with banking sector

- 1. Gertler-Karadi, JME 2011, NK_GK11
- 2. Meh-Moran, JEDC 2010, NK_MM10
- 3. Gerali-Neri-Sessa-Signor., JMCB 2010, EA_GNSS10

Volker Wieland

Models: banking sector

- Banks play a passive role in financial accelerator and housing finance models.
- By contrast, three models considered treat banks' balance sheet and decision processes explicitly, banks' financial conditions can affect credit supply.
- Shocks can originate from the banking sector, this sector plays an crucial role in the transmission of standard macroeconomic shocks.

Role for bank capital

Gertler-Karadi (JME 2011), NK_GK11

Moral hazard problem between banks and depositors, endogenous capital constraint.

Meh-Moran (JEDC 2010), NK_MM10

 Double moral hazard, bank invests net worth with entrepreneur to mitigate moral hazard vs depositor. Bank capital influences ability to attract deposits.

Gerali-Neri-Sessa-Signoretti (JMCB 2010), EA_GNSS10

 Monopolistic banks set deposit and lending rates, capital out of retained earnings, quadratic cost if capital-asset ratio moves from (regulatory) target.

27

MFM, June 20, 2018

25

MFM, June 20, 2018

28

Benchmark monetary policy rule

· Central bank follows first-difference rule as in Orpanides and Wieland (2013)

$$i_t = i_{t-1} + 0.5\pi_t + 0.5(x_t - x_{t-4})$$

Bank capital shock

Note: Impulse response functions for a five-percent fall in bank net worth. Monetary policy is modeled according to the rule in Orphanides and Wieland (2013). A period is a quarter and all variables are expressed in percentage deviations from their non-stochastic steady state value.

assets

$$\nu_t = \rho_{\nu} \, \nu_{t-1} + \chi \underbrace{(b_t - y_t)}_{\text{credit gap}}$$

Volker Wieland

-0.05

0

20

Periods

40

40

Volker Wieland

-0.2

-0.4

-0.6

0

20

Periods

31

MFM, June 20, 2018

Policy regimes

- Perfect cooperation:
 - monetary policy and macroprudential policy jointly optimize a shared objective.
- Leader-follower:
 - Central bank implements first-difference interest rate rule (as in Orphanides and Wieland 2013),
 - macro-prudential policy authority optimizes conditional on central bank policy.

Perfect coordination regime

$$\min_{\{\rho_i,\phi_{\pi},\phi_{x},\phi_{dx},\rho_{\nu},\chi\}} L = \underbrace{\sigma_{\pi}^2 + 0.5\sigma_{x}^2 + 0.5\sigma_{di}^2}_{Central Bank Objective} + \underbrace{\sigma_{b-y}^2 + 0.5\sigma_{x}^2 + 0.5\sigma_{d\nu}^2}_{Macro Pru Objective}$$

$$s.t. i_t = \rho_i i_{t-1} + \phi_{\pi}\pi_t + \phi_x x_t + \phi_{dx} (x_t - x_{t-4})$$

$$\nu_t = \rho_{\nu} \nu_{t-1} + \chi (b_t - y_t)$$

Volker Wieland Volker Wieland 33 34 MFM, June 20, 2018 MFM, June 20, 2018 Perfect coordination lacking robustness Leader follower regime under model uncertainty $\min_{\{\rho_{\nu},\chi\}} L^{mp} = \sigma_{b-y}^2 + 0.5\sigma_x^2 + 0.5\sigma_{d\nu}^2$ s.t. $\nu_t = \rho_{\nu} \nu_{t-1} + \chi (b_t - y_t)$

$$i_t = i_{t-1} + 0.5\pi_t + 0.5(x_t - x_{t-4})$$

			Model	
		GNSS	MM	GK
		% [CGP]	% [CGP]	% [CGP]
	GNSS	-	186 [3.66]	191 [7.83]
Rule	MM	1484 [9.69]	-	595 [13.83]
	GK	∞	∞	-

CGP: Credit Gap Premium, the increase in standard deviation of credit gap relative to the outcome under the model-specific optimized rule that is necessary to match the loss under the alternative rule.

Volker Wieland

35

MFM, June 20, 2018

Volker Wieland

Bayesian model averaging

Bayesian perspective on models, with (probability-weighted) loss

$$L=\sum_{m\in M}p_mL_m$$

where p_m is policymaker's prior as to model m.

$$\min_{\{\rho_{\nu},\chi\}} \sum_{m \in \mathcal{M}} \left[\frac{L_m^{m\rho} - \min(L_m^{m\rho})}{\min(L_m^{m\rho})} \right]$$

s.t. $\nu_t = \rho_{\nu} \nu_{t-1} + \chi (b_t - y_t)$
 $i_t = i_{t-1} + 0.5\pi_t + 0.5 (x_t - x_{t-4})$

MFM, June 20, 2018	Volker Wieland	37	MFM, June 20, 2018	Volker Wieland	38

<u>Robustness</u>

Leader-follower regime more robust

% [CGP] % [CGP]

330 [4.91] 17 [1.23]

GNSS

-

89 [2.54]

GNSS

MM

GK

Rule

Model

MM

60 [2.28]

GK

% [CGP]

113 [11.62]

- 15 [4.17]

Optimized Model-Averaged Macroprudential Rules

Instrument	Average	Loss	Stand	lard Devia	tion
	%	GCP	Inflation	Output	Credit
GNSS	28.23	1 44	1.36	0.80	1.81
MM	8.31	0.85	0.78	1.08	1.86
GK	23.74	5.32	0.41	1.12	7.73
Average	20.10	3.22	0.85	1.00	3.80

 $\nu_t = 0.896\nu_{t-1} + 1.883 \left(b_t - y_t \right)$

Volker Wieland

39

4. A proposal for a competition: Explaining and forecasting the Great Recession.

MFM, June 20, 2018

Model(-specific) elements

Table 1: Model-Specific Variables, Parameters, Shocks and Equations

Notation	Description
x_t^m	endogenous variables in model m
$x_t^{m,g}$	policy variables in model m (also included in x_t^m)
η_t^m	policy shocks in model m
ε_t^m	other economic shocks in model m
$g_m(.)$	policy rules in model m
$f_m(.)$	other model equations in model m
γ^m	policy rule parameters in model m
β‴	other economic parameters in model m
Σ^m	covariance matrix of shocks in model m

A particular model: Policy rules and other equations

(1)
$$E_t[g_m(x_t^m, x_{t+1}^m, x_{t-1}^m, \eta_t^m, \gamma^m)] = 0$$

(2)
$$E_t[f_m(x_t^m, x_{t+1}^m, x_{t-1}^m, \varepsilon_t^m, \beta^m)] = 0$$

Volker Wieland 45 MFM, June 20, 2018 46

Innovations/shocks

(3)
$$E([\eta_t^m \varepsilon_t^m]') = 0$$

(4)
$$E([\eta_t^m' \varepsilon_t^m']'[\eta_t^m' \varepsilon_t^m']) = \Sigma^m = \begin{pmatrix} \Sigma_{\eta}^m & \Sigma_{\eta\varepsilon}^m \\ \Sigma_{\eta\varepsilon}^m & \Sigma_{\varepsilon}^m \end{pmatrix}$$

Introducing common ingredients

Table 2: Comparable Common Variables, Parameters, Shocks and Equations

Notation	Description
24	common variables in all models
z_t^g	common policy variables in all models (also included in z_t)
η_t	common policy shocks in all models
g(.)	common policy rules
γ	common policy rule parameters

47

MFM, June 20, 2018

MFM, June 20, 2018

Augmented model

 $E_t[g(z_t, z_{t+1}, z_{t-1}, \eta_t, \gamma)] = 0 \quad (5)$ $E_t[h_m(z_t, x_t^m, x_{t+1}^m, x_{t-1}^m, \theta^m)] = 0 \quad (6)$ $E_t[f_m(x_t^m, x_{t+1}^m, x_{t-1}^m, \varepsilon_t^m, \beta^m)] = 0 \quad (7)$

 $h_m(.,\theta^m)$: model-specific equations defining common variables in terms of model-specific variables.

Solution

$$z_t = k_z(z_{t-1}, x_{t-1}^m, \eta_t, \varepsilon_t^m, \kappa_z)$$
 (8)

$$x_t^m = k_x(z_{t-1}, x_{t-1}^m, \eta_t, \varepsilon_t^m, \kappa_x)$$
 (9)

• Numerical approximation,

· Compute comparable objectives

- IRF's of z's to η 's, variances and correlations of z's given all shocks, etc.
- · Compute metric measuring distance between different models.

51

Common variables & policy rules

//**	******	**********
// D	efinition of Modelbase Variables in Terms of C	Original Model Variables //*
inte	rest = r^*4 ;	//*
infl	ation = pinf4;	//*
infl	ationg = 4*pinf;	//*
outp	utgap = y-yf;	//*
outp	ut = y;	//*
fisp	ol = eg;	//*
//**	************	********************
//*	*****	*******
11	Policy Rule	//*
		//*
11	Monetary Policy	//*
3	interest = cofintintb1*interest(-1)	//*
	+ cofintintb2*interest(-2)	//*
	+ cofintintb3*interest(-3)	//*
	+ cofintintb4*interest(-4)	//*
	+ cofintinf0*inflationq	//*
	+ cofintinfb1*inflationq(-1)	//*
MFM, June 20, 2018	+ cofintinfb2*inflationq(-2)	//*
	+ cofintinfh3*inflationa(-3)	//*

Monetary policy shocks: Economies

Reproducibility of computational research

A topic in other fields:

- Fomel, Claerbout (2009, Computing in Science and Engineering), Freire, Bonnet, Shasha (2012, SIGMOD), Sandve et al (Computational biology 2013).
- Stanford statistician Donoho (2010, Biostatistics):

"an article about computation result is advertising, not scholarship. The actual scholarship is the full software, code and data, that produced the result."

MFM, June 20, 2018

Volker Wieland