House of Finance at Goethe University Academic Conference Frankfurt, June 5-6, 2008

HoF Project: *MacroModelBase*Building an Archive of Quantitative Models for Managing Macroeconomic Risks

Remarks

by

Volker Wieland
Goethe University of Frankfurt and Center for Financial Studies

1

Quantitative models for managing macroeconomic risks

- Economy-wide dynamic stochastic models that may be used by
 - central banks and finance ministries for designing stabilization policies that help reduce macroeconomic risk.
 - → business economists to assess macroeconomic fluctuations and likely policy responses, as an input for risk management at asset managers, banks, other large enterprises.

A platform for model comparison: MacroModelBase

- Joint initiative of J.B.Taylor (SIEPR-Stanford) V. Wieland (CFS-Goethe) to create a public archive of macroeconomic models on a common platform (Dynare).
 - → Tool to encourage comparative instead of insular approach to model-based research.
 - → Tool to provide policy advice at central banks and treasuries by comparing competing models, or across different economies.
 - → Tool for quantitative assessments of macroeconomic risks and likely policy reactions for asset managers, banks, etc.

3

05.06.08 17:42

MATLAB Command Window

```
Dynare Model Base Small, calibrated models
1 Small Calibrated Models
    1.1. NK RW97. Simple NewKeynesian model as in Woodford & Rotemberg (1997)
   1.3. NKHy CGG99: Hybrid NK model as in Clarida, Gali, Gertler (1999)
   1.4. NK2C CGG02: Two-Country NK model as in Clarida, Gali, Gertler (2002)
   US: FRBUS, ACEL, SW, ...
2.1. US FM95: Small US model by Fuhrer & Moore (1995)
2.2. US MSR04: Small US model by FRB Monetary Studies, Orphanides & Wieland (2004)
   2.3. US FRB03: FRB-US model linearized by Levin, Wieland, Williams (2003)
   2.4. US FRB08: FRB-US model 08 linearized by Laubach (2008)
   2.5. US FRB08mx: FRB-US model 08 mixed expectations, linearized by Laubach (2008)
   2.6. US SW07: US optimization-based model by Smets & Wouters (2007)
   2.7. US ACELO5: Small US model by Altig, Christiano, Eichenbaum & Linde (2004)
   2.8. US ACEL05 2: without variable ordering
   2.9. US ACELO5 3: without variable ordering & without wage bill in advance financi:
   Stimated Euro Area Models EUR: AW-ECB, CW, SW
3.1. EA CW05ta: Small Euro area model/Taylor-contracts by Coenen & Wieland (2005)
3. Estimated Euro Area Models
   3.2. EA CW05fm: Small Euro area model/Fuhrer-Moore contr. by Coenen & Wieland (20
   3.3. EA ECBAWM: ECB Area Wide model linearized as in Kuester & Wieland (2005)
3.4. EA SW03: Euro area optimization-based model by Smets and Wouters (2003) 4. Estimated/calibrated Multi-Country Models — Multi-Country: Taylor, CV
   4.1. G7 TAY93: model of the G7 economies by Tayl GEN93MF, SIGMA-Fed 4.2. G3 CW03: model of the G3 economies by Coenen and Wieland (2002)
   4.3. NK GEM03: Small open economy model by Laxton & Pesenti (2003)
   4.4. NK Sigma07: SIGMA: Two-country Model by Erceq, Guerrieri, Gust (2007)
```

Case study 1: Monetary vs fiscal stimulus in the U.S.

Currently Solving: US ACEL05

No Fiscal Policy Shock is available for Model: US ACEL05

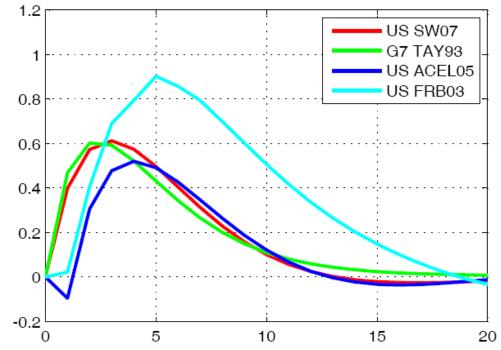
Elapsed time is 3.266117 seconds. Elapsed cputime is 1.7725 seconds.

Currently Solving: US SW07

Elapsed time is 2.428042 seconds. Elapsed cputime is 2.0329 seconds.

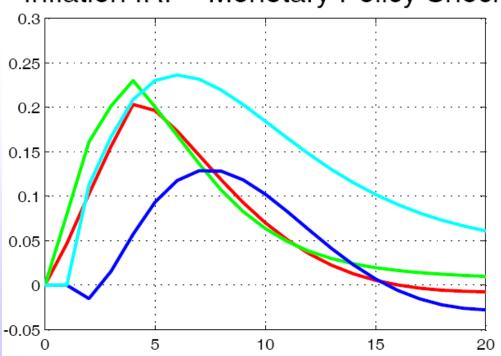
Currently Solving: G7 TAY93

Elapsed time is 22.986525 seconds. Elapsed cputime is 22.4122 seconds.

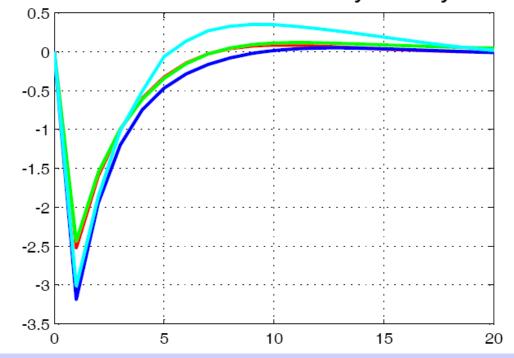

Currently Solving: US FRB03

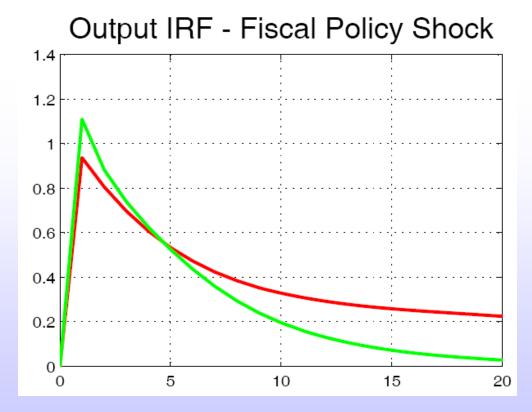
Elapsed time is 72.421689 seconds. Elapsed cputime is 71.2725 seconds.

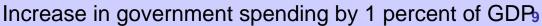
Total elapsed cputime: 105.5718 seconds.

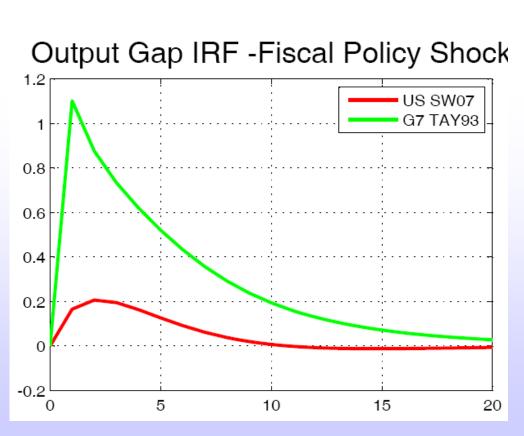

-

Output Gap IRF -Monetary Policy Shock

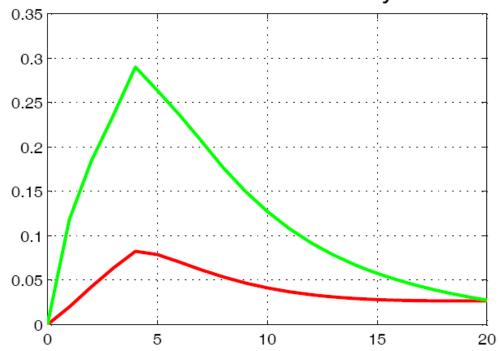



Reduction of federal funds rate by 3 percentage points





Interest Rate IRF - Monetary Policy Shock



11

Case Study 2: EMU and the ECB's models

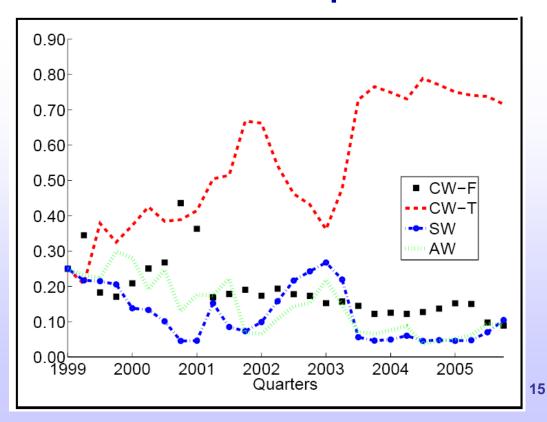
ECB President Willem Duisenberg:

"We at the ECB are committed to developing and maintaining a set of tools that are useful for analyzing the euro area economy, and examining the implications for future inflation.

This is, however, not a trivial task given the large uncertainties that we are facing due to the establishment of a multi-country monetary union. ´´ ECB-CFS conference on "Monetary policy under uncertainty", 1999.

The first-generation ECB toolbox

- (1) AW: Area-Wide Model (ECB-WP 42, 1/2001, EM 2005)
- (2) SW: Smets & Wouters Model, (WP 171, 8/02, JEEA 2003)
- (3) CW-F: Coenen & Wieland Model with Fuhrer-Moore Contracts (ECB-WP 30, 9/2000, EER 2005)
- (4) CW-T: Coenen-Wieland with Taylor Contracts.
- → Assess the range of uncertainty about inflation and output dynamics implied by these models.


13

Kuester and Wieland (2008 rev.)

- Imagine being at the start of monetary union with four models estimated from synthetic data.
- ☐ You checked and found out that optimized policy rules from one model do not always perform well in all other three models (lack of robustness).
- □ Design a monetary policy that is robust to the range of uncertainty spanned by the first generation of ECB models, and allow for learning from EMU data.

14

Evolution of model probabilities

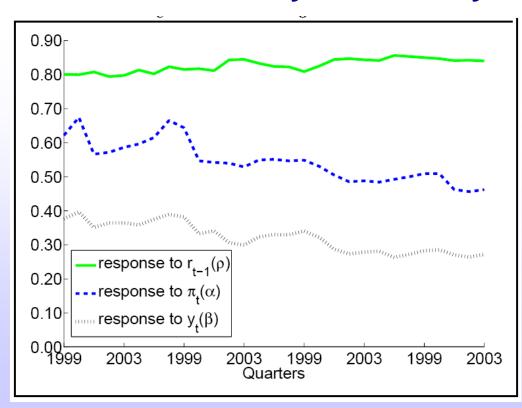
Optimizing simple rules for a given model

☐ Taylor-style rules with int. rate smoothing:

$$i_{t} = \rho i_{t-1} + \alpha \pi_{t} + \beta y_{t} \tag{4}$$

□ Loss function (or model-based utility):

$$L = Var(\pi_t) + \lambda_v Var(y_t) + \lambda_i Var(\Delta i_t)$$
 (5)


Robust policy design with multiple reference models

■ Bayesian: derive policy rule that minimizes expected loss across models:

$$L^{B} = \min_{(\rho,\alpha,\beta)} E_{M} \left[L_{m} \right] = \min_{(\rho,\alpha,\beta)} \sum_{m \in M} p_{m} L_{m}$$
 (6)

17

Evolution of Bayesian Policy

Duisenberg (1999) continued

... Not only can we expect some of the historical relationships to change due to this shift in regime, but also, in many cases, there is a lack of comparable and cross-country data series that can be used to estimate such relationships."

19

ECB Chief Economist Otmar Issing (1999):

"Given the degree of model uncertainty, central bankers highly welcome the recent academic research on the robustness of monetary policy rules across a suite of different models."

Pointing towards research on the U.S. economy at the time as an example.