Kiel Institute for the World Economy The Global Financial Crisis: Lessons and Outlook

> May 8, 2009 A conference celebrating the 25th Anniversary of the Advanced Studies Program

The Fault of the Fed? Lessons for Monetary Policy

Volker Wieland Goethe University of Frankfurt and ECB*

* Disclaimer: Duisenberg Research Fellow. The views expressed should not be attributed to the European Central Bank or its staff.

Outline

- 1. The Taylor critique of pre-crisis Fed policy
- 2. The connection between FOMC projections and FOMC decisions before the crisis
- 3. Some lessons for post-crisis monetary policy
- 4. FOMC projections and policy during the crisis
- 5. Beyond interest rates: Quantitative easing

2

1. The Taylor critique of Fed policy

John B. Taylor on "Housing and Monetary Policy" at the Jackson Hole Conference 2007:

"From 2003 to 2006 the federal funds rate was well below what experience during the previous two decades of good macroeconomic performance would have predicted."

Consequences according to Taylor

Boom:

too low interest rates \rightarrow large amounts of liquidity

- → extraordinary surge in demand for housing
- → housing price inflation → upward spiral
- → low delinquency/foreclosures
- → encourage credit ratings that are unsustainable

Bust:

when interest rates returned to normal level

- → decline in housing demand, construction and prices
- → sharp rise in delinquency and foreclosures
- → meltdown in subprime market and its derivatives.

Taylor's benchmark for comparison

A simple rule:

$$f_t = r^* + \pi_t + 0.5(\pi_t - \pi^*) + 0.5(y_t - y_t^*)$$

f: federal funds rate r*: real equilibrium rate

- π : inflation π^* : inflation target
- y: real output y*: potential output

William Poole (2007) (then-President of St.Louis Fed)

"The FOMC ... views the Taylor rule as a general guideline. Departures from the rule make good sense when information beyond that incorporated in the rule is available." 5

Poole's 2007 version of Taylor's rule

Monetary policy and housing: Taylor's counterfactual

Federal funds rates

7

Taylor's counterfactual

Effect on housing prices

8

"These results suggest that the unusually low level of short-term and long-term interest rates (i,s) may have contributed to the boom in U.S. housing markets".

Departures from the rule

Poole (2007)

" policy is forward looking; which means that from time to time the economic outlook changes sufficiently that it makes sense for the FOMC to set a funds rate either above or below the level called for in the Taylor rule which relies on observed recent data rather than on economic forecasts of future data."

The Jarocinski-Smets B-Var A Vector autoregression model in differences. It is specified in growth rates and uses Bayesian priors about the steady state.

 $\left[\Delta y_t \ \Delta c_t \ \Delta p_t \ HI_t / Y_t \ \Delta hp_t - \Delta p_t \ \Delta cp_t \ i_t \ s_t \ \Delta m_t\right],$

10

12

2. FOMC projections and decisions

Humphrey-Hawkins report (February 2003)

Economic projections for 2003

Percent

Indicator	Memo 2002 actual	Federal Reserve Governors and Reserve Bank presidents		
		Range	Central tendency	
Change, fourth quarter to fourth quarter ¹ Nominal GDP Real GDP PCE chain-type price index	4.1 2.8 1.9	4 ¹ / ₂ -5 ¹ / ₂ 3-3 ³ / ₄ 1 ¹ / ₄ -1 ³ / ₄	$\begin{array}{c} 4^{3}/_{4}-5\\ 3^{1}/_{4}-3^{1}/_{2}\\ 1^{1}/_{4}-1^{1}/_{2}\end{array}$	
Average level, fourth quarter Civilian unemployment rate	5.9	5³∕₊−6	5¾-6	

1. Change from average for fourth quarter of previous year to average for fourth quarter of year indicated.

	Economic projections for 2003 and 2004 Percent			
uly 2003	Indicator	Federal Reserve Governors and Reserve Bank presidents		
	Indicator	Range	Central tendency	
		2003		
	Change, fourth quarter to fourth quarter Nominal GDP Real GDP PCE chain-type price index Average level, fourth quarter Civilian unemployment rate	3½-4¾ 2¼-3 1-1¾ 6-6¼	3¾-4½ 2½-2¾ 1¼-1½ 6-6¼	
	Change, fourth quarter to fourth quarter ¹ Nominal GDP Real GDP PCE chain-type price index Average level, fourth quarter	4¾-6½ 3½-5¼ ¾-2	514-614 334-434 1-112	

J

FOMC projections – notation and data

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

FOMC projections – notation and data

- Time t in terms of quarters
- □ 2 reports per year → semi-annual observations
- Construct t+3 projections made in period t
- **February report:** data can be used as is. u denotes unemployment, π denotes inflation.

$$u_{t+3|t} \equiv u_{t+3|t}^{HH} \qquad \pi_{t+3|t} \equiv \pi_{t+3|t}^{HH}$$

FOMC projections – notation and data

July report: t+3 data needs to be constructed.

$$u_{t+3|t} = \frac{1}{2} (u_{t+1|t}^{HH} + u_{t+5|t}^{HH})$$
$$\pi_{t+3|t} = \frac{1}{2} (\pi_{t+1|t}^{S} + \pi_{t+3|t}^{S})$$

Construct semi-annual inflation projections:

$$\pi_{t+1|t}^S = 2\pi_{t+1|t}^{HH} - \pi_{t-1|t}^S$$

$$\pi^{S}_{t+3|t} = \pi^{HH}_{t+5|t}$$

17

Estimate forecast-based versus outcome-based rules

Specification estimated by non-linear least squares with data from 1988 to 2007:

$$f_t = \rho f_{t-2} + (1-\rho)(a_0 + a_\pi \pi_{\tau|t} + a_u u_{\tau|t})$$

- ➤ u: unemployment rate
- ➢ Outcome-based: *τ=t-1*
- > Forecast-based: $\tau=t+3$

18

Regression results: 88-07

		Regression	n based on	
_	outcomes		fored	casts
	(1)	(2)	(3)	(4)
<i>a</i> ₀	8.29	10.50	6.97	8.25
	1.08	3.07	0.69	0.85
a_{π}	1.54	1.29	2.34	2.48
	0.16	0.43	0.12	0.14
a_u	-1.40	-1.70	-1.53	-1.84
	0.21	0.55	0.14	0.17
)	0	0.69	0	0.39
		0.14		0.06
\bar{R}^2	0.74	0.84	0.91	0.96
SEE	1.10	0.85	0.64	0.44
DW	1.00	1.03	1.74	1.94

Actual Fed Funds vs Estimated Rules

Rules with Smoothing Examine Deviations

But, FOMC Switched Inflation Measures!

Changes in forecasts:

- 2000:1 from consumer price index (CPI) to personal consumption expenditures price index (PCE)
- 2004:2 from PCE to core PCE exluding food and energy
- **D** Possible implications for the rule:
 - Change in estimated coefficients? Therefore, reestimate over CPI period.
 - Change in implied interest rates? Use other CPI forecasts in place of FOMC PCE forecasts.
- What about forecast errors?

22

Uses FOMC preferred measures in terms of FOMC Projections as well as recent outcomes.

23

Extrapolation Using CPI Outcomes and Bluechip CPI Forecasts

Compares real-time FOMC projections to outcomes ²⁵ as measured using the July 2007 vintage data.

Lessons cont'd

- AND NO, it is not yet self-evident that central banks should respond to asset prices directly over and above output and inflation.
- AND, it is not necessary to fix exchange rates or return to the gold standard.
- Central banks should remain independent and in charge of interest rate policy, with more weight given to simple rules than sophisticated discretion.

3. Some Lessons for Post-Crisis Monetary Policy

- YES, Taylor has a point. It's awfully hard to claim that Fed policy had no role in the housing boom and collapse that triggered the financial crisis,
- AND, central banks should take simple rules more seriously. Deviations ought to be systematic and well explained.
- DON'T rely too much on forecasts, particularly if those measures may be revised substantially.

26

4. FOMC projections and decisions during the financial crisis

- Starting in October 2007 the FOMC has been publishing projections on a quarterly basis.
 - Inflation measures include PCE and core PCE, but not CPI.
 - The horizon has been extended.
- We apply the rule estimated in Orphanides and Wieland (2008) to generate interest rate predictions based on the new quarterly FOMC projections data.

Extrapolation with 2007-09 projections

The January 2009 Outlook

Percent

Variable	Central tendency ¹			
	2009	2010	2011	Longer Run
Change in real GDP	-1.3 to -0.5	2.5 to 3.3	3.8 to 5.0	2.5 to 2.7
October projection	-0.2 to 1.1	2.3 to 3.2	2.8 to 3.6	n.a.
Unemployment rate	8.5 to 8.8	8.0 to 8.3	6.7 to 7.5	4.8 to 5.0
October projection	7.1 to 7.6	6.5 to 7.3	5.5 to 6.6	n.a.
PCE inflation	0.3 to 1.0	1.0 to 1.5	0.9 to 1.7	1.7 to 2.0
October projection	1.3 to 2.0	1.4 to 1.8	1.4 to 1.7	n.a.
Core PCE inflation ^s October projection	0.9 to 1.1 1.5 to 2.0	0.8 to 1.5 1.3 to 1.8	0.7 to 1.5 1.3 to 1.7	

30

Risk-Premia Offset vs. Preemptive Easing

Aggressiveness depends a lot on response to unemployment

5. Beyond interest rates: Quantitative easing

- Orphanides and Wieland (2000), Coenen and Wieland (2003):
 - Usually monetary policy is conducted via open market operations but with an operating target for the money market rate.
 - Taylor-rule style monetary policy may be reformulated as a rule in terms of the monetary base.
 - When rate is at zero-interest rate floor, central bank can continue with direct purchases of assets (government debt, private sector debt) and/ or longer-term operations in the money market.

33

Quantitative easing

Does quantitative easing have any real effects?

- Direct effects of money on demand and inflation, (real balance and portfolio-balance effects) still remain active at zero-interest rate floor.
- The effect of an increase in the monetary base is smaller than in normal times and estimates are rather imprecise.
- May justify pre-emptive interest rate reduction and aggressive quantitative easing.

34

Policy as a base money rule

- □ m = base money / (price level * real income)
- Base money rule in normal times (f> 0), similar to interest rate rule but not as practical.

$$m_t = -k_{\pi}(\pi_t - \pi^*) - k_y(y_t - y_t^*)$$

Base money rule at zero-interest floor (f=0), magnification factor x.

$$m_t = -xk_{\pi}(\pi_t - \pi^*) - xk_y(y_t - y_t^*)$$

Questions regarding Fed

- Excessively loose policy driven by pessimistic forecasts and aggressive policy response to unemployment and output?
- Quantitative easing without targets for money base or for longer-term rates. What happened to systematic policy?
- Credit easing at positive rates, I suppose, did not help much?

Questions regarding ECB

- The monetary pillar gave warning signals prior to crisis, possibly a good reason to strengthen its role post-crisis.
- □ Where should rates be now? Taylor rule?
- Perceived floor for the real interest rate?
- Why the aversion against zero nominal rates?
- Often-cited money market argument seems to be based on a misunderstanding. MRO, EONIA, deposit rate.
- How would quantitative easing best be implemented?

References

- Coenen, G. and V. Wieland, The Zero-Interest-Rate Bound and the Role of the Exchange Rate for Monetary Policy in Japan, *Journal of Monetary Economics*, 50 (5), July 2003.
- Jarocinski, M. and F. Smets, House Prices and the Stance of Monetary Policy, Federal Reserve Bank of St. Louis *Review*, July/August 2008, 90 (4), pp. 339-65.
- Orphanides, A. and V. Wieland, Economic Projections and Rulesof-Thumb for Monetary Policy, Federal Reserve Bank of St. Louis *Review*, July/August 2008, 90 (4), pp. 307-24.
- Orphanides, A. and V. Wieland, Efficient Monetary Policy Design Near Price Stability, *Journal of the Japanese and International Economies*, Vol. 14, December 2000, pp. 327-365.
- Poole, William, Understanding the Fed, Federal Reserve Bank of St. Louis *Review*, January/February 2007, 89 (1), pp. 3-13.
- Taylor, John. B., Housing and Monetary Policy, NBER Working Paper 13682, December 2007.

41

References cont'd

Beck, G. and V. Wieland, Money in Monetary Policy Design: A Formal Characterization of ECB-Style Cross-Checking, *Journal of the European Economic Association*, April-May 2007, Vol 5, No 2-3.

Beck, G. and V. Wieland, Central Bank Misperceptions and the Role of Money in Interest Rate Rules, *Journal of Monetary Economics*, Vol 55 (1), November 2008.