Bayesian Estimation of DSGE Models with Hamiltonian Monte Carlo
Forschungsbereich: | Macroeconomics |
---|---|
Forscher: |
Mátyás Farkas, Balint Tatar |
Datum: |
|
Abstract: |
In this paper we adapt the Hamiltonian Monte Carlo (HMC) estimator to DSGE models, a method presently used in various fields due to its superior sampling and diagnostic properties. We implement it into a state-of-the-art, freely available high-performance software package, Stan. We estimate a small scale textbook New-Keynesian model and the Smets-Wouters model using US data. Our results and sampling diagnostics confirm the parameter estimates available in existing literature. In addition, we find bimodality in the Smets-Wouters model even if we estimate the model using the original tight priors. Finally, we combine the HMC framework with the Sequential Monte Carlo (SMC) algorithm to create a powerful tool which permits the estimation of DSGE models with ill-behaved posterior densities. |
Download PDF |